Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.524

Construction and Characterization of Poly (Phenylene Oxide)-Based Organic/Inorganic Composite Membranes Containing Graphene Oxide for the Development of an Anion Exchange Membrane with Extended Ion Cluster  

CHU, JI YOUNG (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
YOO, DONG JIN (Department of Life Sciences, College of Natural Science, Jeonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 524-533 More about this Journal
Abstract
In this study, a series of anion conductive organic/inorganic composite membranes with excellent ionic conductivity and chemical stability were prepared by introducing graphene oxide (GO) inorganic nanofiller into the quaternized poly(phenylen oxide (Q-PPO) polymer matrix. The fabricated organic/inorganic composite membranes showed higher ionic conductivity than the pristine membrane. In particular, Q-PPO/GO 0.7 showed the highest ionic conductivity value of 143.2 mS/cm at 90℃, which was 1.56 times higher than the pristine membrane Q-PPO (91.5 mS/cm). In addition, the organic/inorganic composite membrane showed superior dimensional stability and alkaline stability compared to the pristine membrane, and the physicochemical stability was improved as the content of inorganic fillers increased. Therefore, we suggest that the as-prepared organic/inorganic composite membranes are very promising materials for anion exchange membrane applications with high conductivity and alkaline stability.
Keywords
Anion exchange membrane; Organic/inorganic composite membrane; Hydroxide conductivity; Alkaline stability; Graphene oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Yoon, J. Ding, and K. Kim, "Effect of reduced graphene oxide in photoanode on photoelectrochemical performace in water splitting for hydrogen production", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 4, 2016, pp. 329-334, doi: https://doi.org/10.7316/KHNES.2016.27.4.329.   DOI
2 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Improved electrochemical performance of composite anion exchange membranes for fuel cells through cross linking of the polymer chain with functionalized graphene oxide", Journal of Membrane Science, Vol. 611, 2020, pp. 118385, doi: https://doi.org/10.1016/j.memsci.2020.118385.   DOI
3 Q. Liu, Z. Wang, A. Yu, J. Li, H. Shen, H. Wang, K. Yang, and H. Zhang, "A novel anion exchange membrane based on poly (2,6-dimethyl-1,4-phenylene oxide) with excellent alkaline stability for AEMFC", Internantional Journal of Hydrogen Energy, Vol. 46, No. 47, 2021, pp. 24328-24338, doi: https://doi.org/10.1016/j.ijhydene.2021.05.004.   DOI
4 J, Chen, M. Guan, K. Li, and S. Tang, "High-performance COF-based composite anion exchange membrane sandwiched by GO layers for alkaline H2/O2 fuel cell application", Vol. 104, 2021, doi: https://doi.org/10.1016/j.jiec.2021.08.016.   DOI
5 M. A. Abdelkareem, K. Elsaid, T. Wilberforce, M. Kamil, E. T. Sayed, and A. Olabi, "Environmental aspects of fuel cells: a review", Science of The Total Environment, Vol. 752, 2021, doi: https://doi.org/10.1016/j.scitotenv.2020.141803.   DOI
6 M. M. Alam, M. Hossain, Y. Mei, C. Jiang, Y. Wang, C. Y. Tang, and T. Xu, "An alkaline stable anion exchange membrane for electro-desalination", Desalination, Vol. 497, 2021, doi: https://doi.org/10.1016/j.desal.2020.114779.   DOI
7 S. K. Ryu, A. R. Kim, M. Vinothkannan, K. H. Lee, J. Y. Chu, and D. J. Yoo, "Enhancing physicochemical properties and single cell performance of sulfonated poly(arylene ether) (SPAE) membrane by incorporation of phosphotungstic acid and graphene oxide: a potential electrolyte for proton exchange membrane fuel cells" Polymers, Vol. 13, No. 14, 2021, pp. 2364, doi: https://doi.org/10.3390/polym13142364.   DOI
8 A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, and H. J. Paik, "Partially crosslinked com b-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance", International Journal of Hydrogen Energy, Vol. 45, No. 51, 2020, pp. 27346-27358, doi: https://doi.org/10.1016/j.ijhydene.2020.07.093.   DOI
9 D. J. Yoo, S. H. Hyun, A. R. Kim, G. G. Kumar, and K. S. Nahm, "Novel sulfonated poly(arylene biphenylsulfone ether) copolymers containing bisphenylsulfonyl biphenyl moiety: structural, thermal, electrochemical and morphological characteristics", Polymer International, Vol. 60, No. 1, 2011, pp.85-92, doi: https://doi.org/10.1002/pi.2914.   DOI
10 H. Li, J. Dong, X. Cao, X. Ren, Z. Hao, and J. Yang, "Diamine crossklinked anion exchange membranes based on poly(vinyl benzyl methylpyrrolidinium)", Polymer, Vol. 212, 2021, doi: https://doi.org/10.1016/j.polymer.2020.123156.   DOI
11 I. Muhammad, U. A. Noor, Y. Wang, and T. Xu, "Investigation of key process parameters in acid recovery for diffusion dialysis using novel (MDMH-QPPO) anion exchange membranes", Journal of the Taiwan Insititue of Chemical Engineers, Vol. 93, 2018, pp. 405-413, doi: https://doi.org/10.1016/j.jtice.2018.08.009.   DOI
12 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including zwitterion for alkaline fuel cells", ACS Sustainable Chem. Eng, Vol. 9, No. 26, 2021, pp. 8824-8834, doi: https://doi.org/10.1021/acssuschemeng.1c01978.   DOI
13 S. Y. Lee and D. J. Yoo, "Comparison of properties of two kinds of anion exchange membranes with different functional group for alkaline fuel cells", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 458-465, doi: https://doi.org/10.7316/KHNES.2018.29.5.458.   DOI
14 N. Chen and Y. M. Lee, "Anion exchange polyelectrolytes for membranes and ionomers", Progress in Polymer Science, Vol. 113, 2020, doi: https://doi.org/10.1016/j.progpolymsci.2020.101345.   DOI
15 S. C. Jang, W. C. Tsen, F. S. Chuang, and C. Gong, "Simultaneously enhanced hydroxide conductivity and mechanical properties of quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes", International Journal of Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 18134-18144, doi: https://doi.org/10.1016/j.ijhydene.2019.05.102.   DOI
16 F. H. Liu, C. X. Lin, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Anion exchange membranes with well-developed conductivity channels: effect of the functional groups", Journal of Membrane Science, Vol. 564, 2018, pp. 298-307, doi: https://doi.org/10.1016/j.memsci.2018.07.038.   DOI
17 IEA, "The future of hydrogen", IEA, 2019. Retrieved from https://www.iea.org/reports/the-future-of-hydrogen.
18 L. Lu, G. Dai, J. Lee, and H. G. Lee, "Effect of the mixture ratio of Ni-Pt nanocatalysts on water electrolysis characteristics in AEM system", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 285-292, doi: https://doi.org/10.7316/KHNES.2021.32.5.285.   DOI
19 C. Li and J. B. Baek, "The promise of hydrogen production from alkaline anion exchange membrane electrolyzers", Nano Energy, Vol. 87, 2021, doi: https://doi.org/10.1016/j.nanoen.2021.106162.   DOI
20 S. Miao, H. Zhang, X. Li, and Y. Wu, "A morphology and property study of composite membranes based on sulfonated polyarylene ether sulfone and adequately sulfonated graphene oxide", International Journal of Hydrogen Energy, Vol. 41, No. 1, 2016, pp. 331-341, doi: https://doi.org/10.1016/j.ijhydene.2015.10.080.   DOI
21 Y. Yang, H. Zhang, P. Yan, and K. Jermsittiparsert, "Multiobjective optimization for efficient modeling and improvement of the high temperature PEM fuel cell based Micro-CHP system", Int. J. Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 6970-6981, doi: https://doi.org/10.1016/j.ijhydene.2019.12.189.   DOI
22 Z. Li, R. Yu, C. Liu, J. Zheng, J. Guo, T. A. Sherazi, S. Li, and S. Zhang, "Preparation and characterization of side-chain poly(aryl ether ketone) anion exchange membranes by superacid-catalyzed reaction", Polymer, Vol. 222, 2021, doi: https://doi.org/10.1016/j.polymer.2021.123639.   DOI
23 Z. Liu, L. Bai, S. Miao, C. Li, J. Pan, Y. Jin, D. Chu, X. Chu, and L. Liu, "Structure-property relationship of poly (2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes with pendant sterically crowded quaternary ammoniums", Journal of Membrane Science, Vol. 638, 2021, doi: https://doi.org/10.1016/j.memsci.2021.119693.   DOI
24 M. Manohar, A. K. Das, and V. K. Shahi, "Alternative preparative route for efficient and stable anion-exchange membrane for water desalination by electrodialysis", Desalination, Vol. 413, 2017, pp. 101-108, doi: https://doi.org/10.1016/j.desal.2017.03.015.   DOI
25 S. H. Kim, K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyper-branched PAES/Linear PPO as anion exchange membranes", Polymers, Vol. 12, No. 12, 2020, pp. 3011, doi: https://doi.org/10.3390/polym12123011.   DOI
26 B. Zhang, M. Zhao, Q. Liu, X. Zhang, Y. Fu, E. Zhang, G. Wang, Z. Zhang, and S. Zhang, "Advanced anion exchange membranes with selective swelling-induced ion transport channels for vanadium flow battery application", Journal of Membrane Science, Vol. 642, 2022, doi: https://doi.org/10.1016/j.memsci.2021.119985.   DOI
27 B. Lee, A. Kodir, H. Lee, D. Shin, and B. Bae, "Preparation and charaterization of the polymeric antioxidant for improving the chemical durability of polymer electrolyte membranes", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 308-314, doi: https://doi.org/10.7316/KHNES.2021.32.5.308.   DOI
28 S. Sung, T. S. Mayadevi, K. Min, J. Lee, J. E. Chae, and T. H. Kim, "Crosslinked PPO-based anion exchange membranes: the effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length" Journal of Membrane Science, Vol. 619, 2021, doi: https://doi.org/10.1016/j.memsci.2020.118774.   DOI
29 Y. Jiang, J. Liao, S. Yang, J. Li, Y. Xu, H. Ruan, A. Scotto, B. V. D. Bruggen, and J. Shen, "Stable cycloaliphatic quaternary ammonium-tethered anion exchange membranes for electrodialysis", Reactive and Functional Polymers, Vol. 130, 2018, pp. 61-69, doi: https://doi.org/10.1016/j.reactfunctpolym.2018.05.014.   DOI
30 Y. Li, J. Sniekers, J. C. Malaquias, C. V. Goethem, K. Binnemans, J. Fransaer, and I. F. J. Vankelecom, "Crosslinked anion exchange membranes prepared from poly(phenylene oxide) (PPO) for non-aqueous redox flow batteries", Journal of Power Sources, Vol. 378, 2018, pp. 338-344, doi: https://doi.org/10.1016/j.jpowsour.2017.12.049.   DOI
31 J. Y. Chu, K. H. Lee, A. R. Kim, and D. J. Yoo, "Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units", ACS Sustainable Chem. Eng, Vol. 7, No. 24. 2019, pp. 20077-20087, doi: https://doi.org/10.1021/acssuschemeng.9b05934.   DOI
32 L. Wu, T. Xu, and W. Yang, "Fundamental studies of a new series of anion exchange membranes: Membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination", Journal of Membrane Science, Vol. 286, No. 1-2, 2006, pp. 185-192, doi: https://doi.org/10.1016/j.memsci.2006.09.035.   DOI
33 J. Pan, B. Wei, H. Xie, J. Feng, S. Liao, X. Li, and Y. Yu, "Hexyl-modified series-connected bipyridine and DABCO di-cations functionalized anion exchange membranes for electrodialysis desalination", Separation and Purification Technology, Vol. 265, 2021, doi: https://doi.org/10.1016/j.seppur.2021.118526.   DOI
34 K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. J. Kim, and D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", Journal of Membrane Science, Vol. 434, 2013, pp. 35-43, doi: https://doi.org/10.1016/j.memsci.2013.01.037.   DOI
35 N. Chen, Y. Liu, C. Long, R. Li, F. Wang, and H. Zhu, "Enhanced performance of ionic-liquid-coated silica/quaternized poly(2,6-dimethyl-1,4-phenylene oxide) composite membrane for anion exchange membrane fuel cells", Electrochimica Acta, Vol. 258, 2017, pp. 124-133, doi: https://doi.org/10.1016/j.electacta.2017.10.043.   DOI
36 C. Wang, J. Liao, J. Li, Q. Chen, H. Ruan, and J. Shen, "Alkaline enrichment via electrodialysis with alkaline stable side-chain-type polysulfone-based anion exchange membranes", Separation of Purification Technology, Vol. 275, 2021, doi: https://doi.org/10.1016/j.seppur.2021.119075.   DOI
37 H. Choi, C. Rhyu, S. Lee, C. Byun, and G. Hwang, "Study on anion exchange membrane for the alkaline electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 22, No. 2, 2011, pp. 184-190, doi: https://dx.doi.org/10.7316/khnes.2011.22.2.184.   DOI
38 J. Thomas, B. Francis, S. Thomas, A. Schehter, and F. Grynszpan, "Dependable polysulfone based anion exchange membranes incorporating triazatriangulenium cations", Solid State Ionics, Vol. 370, 2021, doi: https://doi.org/10.1016/j.ssi.2021.115731.   DOI
39 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", International Journal of Hydrogen Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.   DOI
40 J. Chen, P. Li, N. Zhang, and S. Tang, "Highly hydroxide-conducting hybrid anion exchange membrane with functional COF-enhanced ion nanochannels", Electrochimica Acta, Vol. 391, 2021, doi: https://doi.org/10.1016/j.electacta.2021.138962.   DOI