• Title/Summary/Keyword: Analog-to-Digital(A/D)

Search Result 439, Processing Time 0.033 seconds

Multi-Channel Data Acquisition System Design for Spiral CT Application

  • Yoo, Sun-Won;Kim, In-Su;Kim, Bong-Su;Yun Yi;Kwak, Sung-Woo;Cho, Kyu-Sung;Park, Jung-Byung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.468-470
    • /
    • 2002
  • We have designed X-ray detection system and multi-channel data acquisition system for Spiral CT application. X-ray detection system consists of scintillator and photodiode. Scintillator converts X-ray into visible light. Photodiode converts visible light into electrical signal. The multi-channel data acquisition system consists of analog, digital, master and backplane board. Analog board detects electrical signal and amplifies signal by 140dB. Digital board consists of MUX(Multiplex) which routes multi-channel analog signal to preamplifier, and ADC(Analog to Digital Converter) which converts analog signal into digital signal. Master board supplies the synchronized clock and transmits the digital data to image reconstructor. Backplane provides electrical power, analog output and clock signal. The system converts the projected X-ray signal over the detector array with large gain, samples the data in each channel sequentially, and the sampled data are transmitted to host computer in a given time frame. To meet the timing limitation, this system is very flexible since it is implemented by FPGA(Field Programmable Gate Array). This system must have a high-speed operation with low noise and high SNR(signal to noise ratio), wide dynamic range to get a high resolution image.

  • PDF

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

Implementation of a digital FM composite signal generator (디지털 방식 FM 합성 신호 발생기의 구현)

  • 정도영;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1349-1359
    • /
    • 1998
  • In this paper, presented is the result of a digital implementation of a FM stereo composite signal generator. The chip utilizing DDFS(Direct Digital Frequency Synthesizer architecture is implemented using $1.0\mu\textrm{m}$ CMOS gate-array technology thereby replacing analog componentry. To verify the process of generating composite signals a conventional logic simulation method was used. The processed chip was mounted on an evaluation PCB to test and analyze to signals. According to the measurement result obtained by using a 12-bit DAC, the digital FM composite signal generator produces a 74DB spectrally pure signal over its entire tuning range, which is superior to that of analog counterpart by 14dB in it spectral reponse. And further enhancements of the spectral response is expected to be achieved by using a high resolution digital to analog converter, such as a 16-bit DAC. The resulting signals is superior to the signal of the analoy circuitry typically used, in major characteristics such as S/N ratios, accuracy, tuning stability, and signal seperation.

  • PDF

A Study on Performance Improvement of CMMB Receiver to Reduce an Adjacent Channel Interference (인접 채널 간섭 제거를 통한 CMMB 수신기의 성능 향상에 관한 연구)

  • Yu, Yeong-Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.364-371
    • /
    • 2012
  • Currently, CMMB(China Mobile Multimedia Broadcasting) and the conventional analog TV broadcasting have transmitted by using UHF(Ultra High Frequency : 474MHz~754MHz) band. Normally, the transmission power of the digital TV broadcasting is lower than the conventional analog TV broadcasting to protect the reception quality of the conventional analog TV broadcasting. The reception sensitivity of CMMB receiver has severely deteriorated due to adjacent the conventional analog TV broadcasting signals which called ACI (Adjacent Channel Interference). To improve the reception sensitivity of a CMMB receiver on ACI environment, this paper proposed a simple method which is tuning a cut off frequency of LPF (Low Pass Filter). From the experiment, the reception sensitivity of CMMB receiver was improved as 11.3dB.

A Full Digital Multipath Generator (완전 디지털 다중경로발생기)

  • 권성재
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.2
    • /
    • pp.74-81
    • /
    • 2002
  • In general, a multipath generator consists of a time delay generator, phase rotator, and amplitude attenuator, and is implemented mostly in an analog manner. Analog, or partially analog versions of a multipath generator is disadvantageous in that they may suffer from problems associated with component aging and adjustment, signal fidelity degradation stemming from repeated A/D and D/A conversion use of high frequency to achieve fine i.e., subsample fractional tin delays. This paper presents the design and implementation methodology of a full digital multipath generator which can be used in performance evaluations of digital terrestrial television as well as communications, receivers. In particular, an efficient practical method is proposed which can achieve both integer and fractional time delays simultaneously, without placing restrictions on the allowable system master clock frequency. The proposed algorithm lends itself to minimizing hardware implementation cost by relegating some fixed put of the computation involved to an IBM PC. The proposed multipath generator occupies only a single digital board space, and its experimental results are provided to corroborate the proposed implementation methodology.

  • PDF

A Study on Precision Position Measurement Method for Analog Quadrature Encoder (정현파 엔코더를 이용한 정밀위치 측정방법에 관한 연구)

  • Kim Myong-Hwan;Kim Jang-Mok;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.485-490
    • /
    • 2004
  • This paper presents a new interpolation algorithm for measuring high resolution position information which is prepared to a nino servo control motor using analog quadrature encoder. In the past, there are large capacity of memory(ROM or RAM) and two high price and resolution A/D(Analog-to-Digital Converter) for sensing two quadrature signals from a analog sinusoidal encoder interpolation. But high resolution of position from sinusoidal encoder can be obtained by using only small capacity of memory, one A/D converter and comparator. Experimental results show that the proposed algorithm is useful for measuring high resolution position.

A Low-Crosstalk Design of 1.25 Gbps Optical Triplexer Module for FTTH Systems

  • Kim, Sung-Il;Park, Sun-Tak;Moon, Jong-Tae;Lee, Hai-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a 1.25 Gbps triplexer module for Ethernet passive optical networks to realize fiber-tothe-home services. Electrical crosstalk characteristic of the 1.25 Gbps optical triplexer module on a resistive silicon substrate should be more serious than on a dielectric substrate. Consequently, using the finite element method, we analyze the electrical crosstalk phenomena and propose a silicon substrate structure with a dummy ground line that is the simplest low-crosstalk layout configuration in the 1.25 Gbps optical triplexer module. The triplexer module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and an analog photodetector as a cable television signal receiver. According to IEEE 802.3ah and ITU-T G.983.3, the digital receiver and analog receiver sensitivities have to meet -24 dBm at $BER=10^{-12}$ and -7.7 dBm at 44 dB SNR. The electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the dummy line with $100\;{\mu}m$ space from the signal lines and 4 mm separations among the devices satisfies the electrical crosstalk level compared to a simple structure. This proposed structure can be easily implemented with design convenience and greatly reduce the silicon substrate size by about 50 %.

  • PDF

A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays (비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로)

  • 오태환;조영재;박희원;이승훈
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.

A Single-Bit 2nd-Order Delta-Sigma Modulator with 10-㎛ Column-Pitch for a Low Noise CMOS Image Sensor (저잡음 CMOS 이미지 센서를 위한 10㎛ 컬럼 폭을 가지는 단일 비트 2차 델타 시그마 모듈레이터)

  • Kwon, Min-Woo;Cheon, Jimin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for column-parallel analog-to-digital converter (ADC) array used in a low noise CMOS image sensor. The proposed modulator implements two switched capacitor integrators and a single-bit comparator within only 10-㎛ column-pitch for column-parallel ADC array. Also, peripheral circuits for driving all column modulators include a non-overlapping clock generator and a bias circuit. The proposed delta-sigma modulator has been implemented in a 110-nm CMOS process. It achieves 88.1-dB signal-to-noise-and-distortion ratio (SNDR), 88.6-dB spurious-free dynamic range (SFDR), and 14.3-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 418 for 12-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 970×10 ㎛2 and 248 ㎼, respectively.

Design of D/A Converter using the Multiple-valued Logic (다치논리를 적용한 D/A 변환기의 설계)

  • 이철원;한성일;최영희;성현경;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2621-2624
    • /
    • 2003
  • In this paper, we designed 12Bit DAC(Digital to Analog Converter) that applied to multiple-valued logic system to Binary system. The proposed D/A Converter structure consists of the Binary to Quaternary Converter(BQC) and Quaternary to Analog Converter(QAC). The BQC converts the two input binary signals to the one Digit Quaternary output signal. The QAC converts the Quaternary input signal to the Analog output signal. The proposed DAC structure can implement voltage mode DAC that high resolution low power consumption with reduced chip area. And also, it has advantage of the easy expansion of resolution and fast settling time.

  • PDF