• Title/Summary/Keyword: Analog integrated circuits

Search Result 70, Processing Time 0.026 seconds

Design of Two-Stage Class AB CMOS Buffers: A Systematic Approach

  • Martin, Antonio Lopez;Miguel, Jose Maria Algueta;Acosta, Lucia;Ramirez-Angulo, Jaime;Carvajal, Ramon Gonzalez
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 ${\mu}m$ CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 ${\mu}W$).

Grid-Enabled Parallel Simulation Based on Parallel Equation Formulation

  • Andjelkovic, Bojan;Litovski, Vanco B.;Zerbe, Volker
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.555-565
    • /
    • 2010
  • Parallel simulation is an efficient way to cope with long runtimes and high computational requirements in simulations of modern complex integrated electronic circuits and systems. This paper presents an algorithm for parallel simulation based on parallelization in equation formulation and simultaneous calculation of matrix contributions for nonlinear analog elements. In addition, the paper describes the development of a grid interface for a parallel simulator that enables a designer to perform simulations on distant computer clusters. Performances of the developed parallel simulation algorithm are evaluated by simulation of a microelectromechanical system.

Characteristics of SiGe Thin Film Resistors in SiGe ICs (SiGe 집적회로 내의 다결정 SiGe 박막 저항기의 특성 분석)

  • Lee, Sang-Heung;Lee, Seung-Yun;Park, Chan-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.439-445
    • /
    • 2007
  • SiGe integrated circuits are being used in the field of high-speed wire/wireless communications and microwave systems due to the RF/high-speed analog characteristics and the easiness in the fabrication. Reducing the resistance variation in SiGe thin film resistors results in enhancing the reliability of integrated circuits. In this paper, we investigate the causes that generate the resistance nonuniformity after the silicon-based thin film resistor was fabricated, and consider the counter plan against that. Because the Ti-B precipitate, which formed during the silicide process of the SiGe thin film resistor, gives rise to the nonuniformity of SiGe resistors, the boron ions should be implanted as many as possible. In addition, the resistance deviation increases as the size of the contact hole that interconnects the SiGe resistor and the metal line decreases. Therefore, the size of the contact hole must be enlarged in order to reduce the resistance deviation.

A Survey on the Works of Analog and Interface Technologies for Smart Phone System Integrated Circuits (스마트폰 시스템반도체를 위한 아날로그 및 인터페이스 기술과 이슈 분석)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.668-670
    • /
    • 2011
  • The Next-generation IT technology has been evolving from single technique to another which has merged, converging characteristics. The government categorized the 5 essential technologies to secure competitiveness in designing system semiconductors as smart motor vehicle info-tainment platform, smart TV multimedia system, smart phone analog interface technique, smart convergence digital communication and RF techniques, and advanced power management for smart devices. Also, it designated smart phone, smart TV, smart motor vehicle, and smart pad as the key industries. Such core techniques will become the key technologies of semiconductor design to secure the competitiveness of the next generation smart devices and the techniques can be transferred to fab-less design companies. In this contribution, we analyze the issues and the problems of the smart phone analog and interface techniques.

  • PDF

A3V 10b 33 MHz Low Power CMOS A/D Converter for HDTV Applications (HDTV 응용을 위한 3V 10b 33MHz 저전력 CMOS A/D 변환기)

  • Lee, Kang-Jin;Lee, Seung-Hoon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.278-284
    • /
    • 1998
  • This paper describes a l0b CMOS A/D converter (ADC) for HDTV applications. The proposed ADC adopts a typical multi-step pipelined architecture. The proposed circuit design techniques are as fo1lows: A selective channel-length adjustment technique for a bias circuit minimizes the mismatch of the bias current due to the short channel effect by supply voltage variations. A power reduction technique for a high-speed two-stage operational amplifier decreases the power consumption of amplifiers with wide bandwidths by turning on and off bias currents in the suggested sequence. A typical capacitor scaling technique optimizes the chip area and power dissipation of the ADC. The proposed ADC is designed and fabricated in s 0.8 um double-poly double-metal n-well CMOS technology. The measured differential and integral nonlinearities of the prototype ADC show less than ${\pm}0.6LSB\;and\;{\pm}2.0LSB$, respectively. The typical ADC power consumption is 119 mW at 3 V with a 40 MHz sampling rate, and 320 mW at 5 V with a 50 MHz sampling rate.

  • PDF

Embedded Inductors in MCM-D for RF Appliction (RF용 MCM-D 기판 내장형 인덕터)

  • 주철원;박성수;백규하;이희태;김성진;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.31-36
    • /
    • 2000
  • We developed embedded inductors in MCM-D substrate for RF applications. The increasing demand for high density packaging was the driving forces to the development of MCM-D technology. Most of these development efforts have been focused on high performance digital circuits. However, recently there is a great need fur mixed mode circuits with a combination of digital, analog and microwave devices. Mixed mode modules often have a large number of passive components that are connected to a small number of active devices. Integration of passive components into the high density MCM substrate becomes desirable to further reduce cost, size, and weight of electronic systems while improving their performance and reliability. The proposed MCM-D substrate was based on Cu/photosensitive BCB multilayer and Ti/Cu is used to form the interconnect layer. Seed metal was formed with 1000 $\AA$ Ti/3000 $\AA$ Cu by sputtering method and main metal was formed with 3 $\mu\textrm{m}$ Cu by electrical plating method. The multi-turn sprial inductors were designed in coplanar fashion. This paper describe the manufacturing process of integrated inductors in MCM-D substrate and the results of electrical performance test.

  • PDF

Low-Power Direct Conversion Transceiver for 915 MHz Band IEEE 802.15.4b Standard Based on 0.18 ${\mu}m$ CMOS Technology

  • Nguyen, Trung-Kien;Le, Viet-Hoang;Duong, Quoc-Hoang;Han, Seok-Kyun;Lee, Sang-Gug;Seong, Nak-Seon;Kim, Nae-Soo;Pyo, Cheol-Sig
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.33-46
    • /
    • 2008
  • This paper presents the experimental results of a low-power low-cost RF transceiver for the 915 MHz band IEEE 802.15.4b standard. Low power and low cost are achieved by optimizing the transceiver architecture and circuit design techniques. The proposed transceiver shares the analog baseband section for both receive and transmit modes to reduce the silicon area. The RF transceiver consumes 11.2 mA in receive mode and 22.5 mA in transmit mode under a supply voltage of 1.8 V, in which 5 mA of quadrature voltage controlled oscillator is included. The proposed transceiver is implemented in a 0.18 ${\mu}m$ CMOS process and occupies 10 $mm^2$ of silicon area.

  • PDF

Integrated Filter Circuits Design for Mobile Communications (무선 이동통신 단말에 응용 가능한 집적 필터회로 설계)

  • Lee, Kwang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.991-997
    • /
    • 2013
  • A new frequency tuning scheme and a transconductor with a wide tuning range and low harmonic distortion is presented. This frequency tuning technique is based on the relationship between the time-constant and the elapsed times in charging a capacitor up to a certain level. Its structure is as simple as that of a conventional tuning scheme using a VCF(Voltage-Controlled Filter) and it does not need a pure sine wave but uses a CLK(Clock) pulse as a reference signal, which is easily obtained from on-chip system clocks or external X-tal oscillators. When a certain reference CLK is given, without complex capacitor arrays the pole frequency of the filter can be controlled continuously in the frequency domain. Simulation results are presented to confirm the operation of the proposed approach.

Preparation of Zr0.7Sn0.3TiO4 Thin Films by Metal Organic Decomposition and Their Dielectric Properties (금속유기분해법을 사용한 Zr0.7Sn0.3TiO4 박막 제조 및 유전특성)

  • Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • $Zr_{0.7}Sn_{0.3}TiO_4$ (ZST) thin films were fabricated by metal-organic decomposition, and their dielectric properties were investigated in order to evaluate their potential use in passive capacitors for rf and analog/mixed signal integrated circuits. The ZST thin film annealed at the temperature of $800^{\circ}C$ showed a dielectric constant of 27.3 and a dielectric loss of 0.011. The capacitor using the ZST film had quadratic and linear voltage coefficient of capacitance (VCC) of -65 ppm/$V^2$ and -35 ppm/V at 100 kHz, respectively. It also exhibited a good temperature coefficient of capacitance (TCC) value of -32 ppm/$^{\circ}C$ at 100 kHz.

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.