
ETRI Journal, Volume 32, Number 4, August 2010 © 2010 Bojan Andjelković et al. 555

Parallel simulation is an efficient way to cope with long
runtimes and high computational requirements in
simulations of modern complex integrated electronic
circuits and systems. This paper presents an algorithm for
parallel simulation based on parallelization in equation
formulation and simultaneous calculation of matrix
contributions for nonlinear analog elements. In addition,
the paper describes the development of a grid interface for
a parallel simulator that enables a designer to perform
simulations on distant computer clusters. Performances of
the developed parallel simulation algorithm are evaluated
by simulation of a microelectromechanical system.

Keywords: Parallel simulation, electronic circuit
simulation, grid computing, Beowulf cluster, distributed
computing, microelectromechanical systems.

Manuscript received Mar. 31, 2009; revised last May 17, 2010; accepted June 1, 2010.
Bojan Andjelković (phone: +381 18 529321, email: abojan@gmail.com) was with the

Faculty of Electronic Engineering, University of Niš, Serbia, and is now with Fujitsu
Semiconductor Europe, Germany.

Vančo B. Litovski (email: vanco.litovski@elfak.ni.ac.rs) is with the Faculty of Electronic
Engineering, University of Niš, Serbia.

Volker Zerbe (email: volker.zerbe@tu-ilmenau.de) is with the Ilmenau University of
Technology, Germany.

doi:10.4218/etrij.10.0109.0197

I. Introduction

Rapid growth of the complexity in modern mixed-signal
integrated circuit (IC) and system-on-a-chip (SoC) designs
demands powerful simulators capable of quickly analyzing and
validating the system’s functionality as a whole. The simulation
process of large-scale models describing today’s ICs is
memory and computationally intensive, and algorithmically
complex. These properties pertain to the fact that a large
number of ordinary (and, potentially, partial) nonlinear
differential equations have to be solved for long running
excitations. One should not forget that within some design
activities such as test vector verification or circuit optimization,
many of the repetitive simulations are expected to be
performed for the same system. In addition, even a single
simulation run creates a huge amount of data that needs to be
processed. Because of all these reasons, simulation runtimes
are very long and lead to slow design process.

An effective solution to this problem is to parallelize the
simulation algorithm and use a distributed computing platform
such as a cluster of workstations to run simulations. In such an
approach, the simulator distributes complex calculations,
necessary for the simulation process, across different
workstations/processors, and executes them simultaneously.

The development of low-cost personal computers and
gigabit LAN network connections offers a possibility for
implementation of inexpensive distributed multiprocessor
systems such as computer clusters. A cluster has many
advantages over a classic supercomputer: it is inexpensive,
flexible, easy to use, easy to maintain, and highly stackable.
One particular implementation of this approach, involving
open source system software and dedicated networks, has
acquired the name “Beowulf” [1].

Grid-Enabled Parallel Simulation Based on
 Parallel Equation Formulation

 Bojan Andjelković, Vančo B. Litovski, and Volker Zerbe

556 Bojan Andjelković et al. ETRI Journal, Volume 32, Number 4, August 2010

The growth of Internet and WAN links of great capacity and
speed led to development of the computational grid. In the
same way as power grid provides electrical power,
computational power can be obtained on demand from a
network of providers, potentially belonging to the entire
Internet. The grid is a highly heterogeneous and a
geographically widely distributed computing system consisting
of interconnected shared computer resources (computer
clusters) that users can utilize for their demanding tasks. At the
beginning, this paradigm had been strictly scientific and
academic; but, as in the case of the Internet, it became widely
accepted and popular. One of the most common definitions is
that a computational grid is a hardware and software
infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to high-end computational capabilities
which enables on-demand access to computing, data, and
services [2]. Grid computing is suitable for intensive
calculations that require significant processing power, large
operating memory, as well as storage capacity. The simulation
of ICs is paradigmatic example of such calculations [3].

1. Related Work

Several parallel simulators of electronic circuits have been
developed recently, such as Xyce [4], TITAN [5], and SEAMS
[6]. FineSim Spice from Magma Inc. is a commercial transistor-
level circuit simulator for mixed-signal SoCs that can run over
distributed networks or multi-CPU workstations [7]. Several
electronic design automation (EDA) companies have recently
created parallel simulators for analog and mixed-signal designs
running on multicore computer architectures. The simulators
such as HSPICE [8] and Virtuoso Accelerated Parallel Simulator
[9] use multithreading simulation capabilities to exploit
multicore processors in simulation of large post-layout designs.

In order to minimize the simulation runtime, parallel
simulators partition the data and computation over multiple
workstations and processors/cores. The main goal of the applied
partitioning algorithms is to minimize communication between
the workstations/processors and achieve their equal load [10].

One of the first published algorithms for partitioning at
transistor level is Node Tearing [11]. However, it was applied
on a single-processor computer, and the main reason for its
implementation was the intractable complexity of the whole
system. This algorithm starts from an input voltage source and
gathers adjacent elements until it reaches a specified partition
size. If there are several possibilities for the selection of an
adjacent element, the algorithm takes the node with fewer
connections to other partitions.

Another approach for partitioning simply splits the ASCII
file containing the circuit description and improves this initial

partitioning by shifting components [12].
TITAN and Xyce are parallel transistor level simulators that

use SPICE [13] as modeling language. TITAN uses a complex
partitioning algorithm COPART to split the circuit description
and distribute generated partitions to different
workstations/processors. The partitioning is based on
evaluating the level of coupling between adjacent elements,
and the generated partitions (SPICE subcircuits) tend to have
small number of interconnect nodes and well-balanced sizes
[14]. Partitioning cuts the nets between partitions, that is,
interconnect nets. Parallel analog simulator handles these nets
as I/O nets for the related subcircuits and connects virtual
voltage sources to these I/O’s.

After partitioning of the circuit all parts are simulated in
parallel as separate circuits. The partitioning algorithm also
creates a master partition that takes care of the consistency of
the circuit variables at the connections and accommodates local
time agents to the main simulation time agent for all subcircuits.
This “synchronization” is not to be confused with inter-
processor synchronization that will be necessary in parallel
simulation. The master process evaluates the network variables
within the connection network while the slave processors wait
(that is, stop the parallel simulation). The connection network
calculation is time consuming, and simulation runtime
increases with each additional interconnecting signal between
the partitions [14].

In Xyce a single, a large nonlinear problem is distributed
across a large number of processors on the matrix level. The
partitioning is performed on the graph of the problem, after the
problem has been flattened [15].

The amount of parallelism inherent to the circuit limits the
partitioning success [6] and some of the algorithms give good
results only on mutually independent subcircuits. However, in
typical ICs, the elements are highly connected including strong
feed-back signals, and partitioning generates many connections
between the partitions causing significant inter-partition load
and consequently longer simulation runtimes.

Techniques for allowing each subcircuit to determine its own
time steps, and hence to optimize the simulation for each
partition, have been proposed, too. However, most of the
simulators use the same time step for all partitions due to the
fact that an appropriate complex subcircuits synchronization
algorithm is necessary to exchange required simulation data
(values of voltage for interconnect nets) between the circuit
partitions.

SEAMS is a VHDL-AMS simulator that implements
parallel digital simulation. In order to perform parallel mixed-
signal simulation, the parallel digital simulator is synchronized
with an analog simulation kernel. Parallel analog simulation in
SEAMS is based on grouping and solving for the unknowns

ETRI Journal, Volume 32, Number 4, August 2010 Bojan Andjelković et al. 557

occurring in a connected set of equations [16]. A single
connected set of equations is referred to as an “analog island.”
Partitioning is performed such that no two “analog islands”
may communicate during simulation. However, it is very
difficult, if not impossible, to determine sets of equations
independent from each other, and the results of this algorithm
may vary for different circuits and systems (for example,
systems with strong feedback) depending on the properties of
the equations describing them.

While a broad survey of various parallel simulator
implementations and algorithms can be found in [17], in this
paper, we present a new and original concept of development,
a parallel simulation algorithm that could be implemented in a
simulator to speedup the simulation process. This algorithm
avoids all complex circuit partitioning algorithms which lead to
simple parallelization. It is based on the fact that in any
implementation of a circuit analysis algorithm, two steps are to
be performed in a sequence: equation formulation and equation
solution. Accordingly, parallelization is to be implemented in
these steps separately. To come to the final idea on the concept
of the new algorithm, we first claim that the problem of parallel
solution of a system of equations is already solved in any
respect. That means existing subroutines (IP software
packages) for parallel solution of sparse systems of linear
equations may be used and inserted into any simulation
program. Second, being aware that all electronic circuits are
nonlinear ones, one should have in mind that for these kind of
circuits, the equation formulation step of the simulation
algorithm requires much computational effort and time.
Therefore, our algorithm implements parallelization of the
equation formulation by distributing to different processors the
calculation of contributions of the nonlinear elements to the
system of equations. That leads to reduction in the overall
simulation runtime. In order to explore the efficiency of the
algorithm, it was implemented in a simulator running on a
Beowulf type workstation cluster. A microelectromechanical
system with a capacitive pressure sensor was used to evaluate
performances of the developed parallel simulation algorithm.
In addition, we describe the implementation of the grid
interface for a parallel simulator that enables use of distant
computer clusters on the grid network to perform simulations.

II. Parallelization of the Simulation Algorithm

In order to simulate a complex mixed-signal and mixed-
mode electronic system, it is necessary to describe (model) it.
Mixed-mode systems are described using:

1. Algebraic equations
2. Ordinary differential equations (ODE)

3. Partial differential equations (PDE)
4. Abstract system-level behavioral descriptions
5. Logic functions (systems of discrete equations).

Algebraic equations describe the resistive, time independent

part, whereas nonlinear ODEs describe the dynamic part of the
system. Nonlinear ODEs are discretized using finite difference
formulae (usually referred to as numerical integration rules)
that reduce them to a system of nonlinear algebraic equations.
In the simulation of microelectromechanical systems
(MEMS), electronic systems containing transmission lines, and
magnetomechanical components, or when electrothermal
simulations are performed [18], PDEs are used for modeling
these specific parts and phenomena within the system. In order
to obtain a set of ordinary differential equations, space
discretization is performed, introducing new time dependent
variables distributed in space. Therefore, PDEs introduce new
sets of ODEs, whose number is usually very large, depending
on the discretization mesh [19]. The resulting ODEs are then
discretized to produce a nonlinear algebraic equation system.
All this generates a potentially large system of nonlinear
equations to be solved at a large number of time instants
depending on the properties of the system under simulation and
the stimulus signals (number of events at the input). Thus, one
comes down to the problem of formulation and solution of a
system of nonlinear equations that is solved iteratively, with the
help of linearization, that is, by application of Newton methods.
There are two loops during the simulation flow: a time loop for
incrementing simulation time, and inside it, an iterative loop for
solving the system of nonlinear equations until convergence is
reached. Since all electronic components (transistors, diodes
etc.) are described by nonlinear models, the calculation of all
derivatives that are necessary for the linearization (within the
equation formulation phase) is a very time consuming part of
the simulation process. The number of iterations per time
instant depends on the properties of the system to be simulated,
on the effectiveness of the so called predictor algorithm that
creates initial solutions for the iterative process at every time
instant, and on the equation formulation/solution algorithm that
is implemented at the linearized level. Even for small systems,
given a good initial solution, there are, in general, several
iterations per time instant.

In circuit and system simulation, it is necessary to formulate
the equations describing the system automatically. The
modified nodal analysis (MNA) method is practically a
standard for that purpose [20]. This method determines the
contribution of every particular circuit element to the system of
equations and enables automatic creation of the equations by
successive addition of particular contributions in the circuit
matrix and right-hand side vector. This means that in order to

558 Bojan Andjelković et al. ETRI Journal, Volume 32, Number 4, August 2010

Fig. 1. Simple circuit with nonlinear elements and its matrix to
illustrate equation formulation.

R1

D2 D3 D1 R2 C

1, 1, 1,
d1 1 d2 1 d2

1, 1, 1,
1 d2 d3 2 1 d2

1/ 1/

1/ 1/ / 1/

n m n m n m

n m n m n m

G R G R G

R G G R C h R G

+ + +

+ + +

⎡ ⎤+ + − −
⎢ ⎥

− − + + + +⎢ ⎥⎣ ⎦

create system of linear equations in each iteration, one need to
scan all elements in the circuit description, generate discretized
models, generate linearized models for nonlinear elements, and
finally add the contribution of every element to the matrix of
the system of linear equations and right-hand side vector. In
order to illustrate this, Fig. 1 shows a simple circuit containing
three diodes. This figure also shows the circuit matrix with
contribution of all elements.

Here n denotes time steps counter (the time is calculated as
t=n×h where h is the time increment). m denotes the number
of iteration for a specific time instant. The simulator
recalculates in each iteration contribution of diodes

1,
d1,

d d d/ ,
n mun m

sG i u I eλλ
++ = ∂ ∂ = which are derivatives of diode

current per voltage between its terminals.
In the following paragraphs, we will consider and compare

in more detail the existing algorithm with circuit partitioning
and the new algorithm with parallel equation formulation.
Figure 2(a) shows a typical algorithm for parallel simulation of
nonlinear dynamic electronic circuits in a time domain. It is
based on partitioning of the circuit model and simulation of the
generated partitions in parallel [5]. As Fig. 2(a) shows, when
the iterative analysis of a partition for a specific time instant
finishes, the obtained result is not final. It is necessary for
voltages at the connections between the partitions to be equal
for each partition. In order to adjust these node voltages, one
additional iterative loop is executed (denoted in the Fig. 2(a) as
interconnect voltage adjustment loop). Therefore, there is an
additional overhead in simulation time in this algorithm
required to adjust interconnect voltages between the partitions.

Figure 2(b) shows a new approach to parallel simulation. In
this algorithm no partitions are made and, consequently, it is
not necessary to calculate interconnect voltages. To explain the
idea we provide the following considerations.

During the simulation of a nonlinear dynamic electronic
circuit at each iteration and time instant, it is necessary to
recalculate the matrix entries of the system of linear equations.
The entries coming from nonlinear elements are derivatives of

Fig. 2. Simulation algorithms for nonlinear dynamic circuits in
time domain: (a) with partitioning of the circuit and (b)
new algorithm based on parallel equation formulation.

Generate node voltages and specified
branch currents x0=[(v0)T(i0)T]T

Choose time step, h
n=0

while (t<T)

Until convergence

Until convergence

Partition the circuit and
for every partition

m=0, predict zn+1,0=x0,
for n>0, zn+1,0=xn

Generate discretized and linearized
models and (for every partition)

formulate systems of linear equations

Solve the system and find zn+1,m+1

Update zn+1,m

m++
Update node voltages at the

connections between partitions and
create xn+1,m+1

t=t+h
update xn

n++

Time
loop

Interconnect
voltage

adjustment
loop

Iterative
loop

Generate node voltages and specified
branch currents x0=[(v0)T(i0)T]T

Choose time step, h
n=0

Time
loop

while (t<T)

m=0
predict xn+1,0

Until convergence
Iterative

loop

Generate discretized and
linearized models formulate system

of linear equations

Solve the system and find xn+1,m+1

Update xn+1,m

 m++
t=t+h

 update xn

 n++

Perform
in parallel

(a) (b)

the nonlinear equations, and the simulator computes them
within specific subroutines.

A large number of matrix entries, iterations and time instants
requires an immense computational effort during simulation.
As demonstrated in [21], for small circuits with the number of
nodes N<20, the majority of simulation time is spent during the
equation formulation phase and forming the circuit matrix.
When the size of the circuit grows, the time required for
equation formulation increases linearly with the number of
circuit elements, and therefore, with the number of equations
used to model them. Therefore, the calculation of matrix entries
and equation formulation for nonlinear circuit elements should
be parallelized. The part of the simulation algorithm that it is
possible to parallelize is highlighted in Fig. 2(b). This
parallelization is an additional mechanism that can further
accelerate the simulation together with parallelization of the
solution phase of the system of linear equations that succeeds
the equation formulation phase.

If one considers the circuit matrix as a sum of several
matrices, the number of which is equal to the number of
processors used in the simulation, it is possible to create the
whole circuit matrix by creating its parts and then summing
them. Figure 3 illustrates that process. Every submatrix
contains entries for a specific (assigned) number of nonlinear

ETRI Journal, Volume 32, Number 4, August 2010 Bojan Andjelković et al. 559

Fig. 3. Parallelization of equation formulation for nonlinear
circuit elements.

Matrix
entries

Nonlinear
elements

Matrix
entries

Nonlinear
elements

Matrix
entries

Nonlinear
elements

…

Matrix entries
Constant

Linear time dependent
elements

Submatrix

Circuit matrix

Submatrix Submatrix

In every
iteration

circuit elements. There is no need for a special criterion for
allocation of the circuit elements to a specific processor (that is
a submatrix). The total list of nonlinear elements is simply
divided into sublists with an equal number of nonlinear
elements. The number of elements in a sublist is determined by
simply dividing the total number of nonlinear circuit elements
by the number of processors. Then, every processor calculates
submatrix entries for elements in one partition.

Such parallelization of the simulation algorithm is a different
approach from already developed solutions. The main
differences between the new algorithm based on parallel
equation formulation and the existing algorithms with circuit
partitioning are:

• The new algorithm does not require sophisticated circuit and
task partitioning algorithms to create partitions of equal size
and minimal number of interconnect points. There is no
partitioning of the circuit. However, the total number of
nonlinear elements is divided into equal subsets which are
assigned to processors.

• Since there is no partitioning, parallel simulation speedup
does not depend on the circuit structure and number of
interconnections between the partitions. Calculations of
matrix contributions are completely independent of each
other.

• There is no additional overhead in simulation time caused
by the adjustment of interconnect voltages between
partitions.

• There is no need for synchronization protocols to exchange
interconnect data between the partitions, so the new
algorithm is easy to implement on a distributed computing
platform (for example, the Beowulf cluster).

The generation of matrix entries for linear resistive and linear
dynamic elements is performed on one processor, since these
calculations may be performed outside of the iterative loop.
Moreover, the matrix contributions for linear resistive elements
are calculated only once outside time and iterative loops, while

entries for linear time dependent elements are calculated at
every time instant outside iterative loop. All this reduces the
overall time necessary for equation formulation. When parallel
generation of matrix entries for all nonlinear elements is
finished, the complete circuit matrix is formed (aggregated) as
depicted in Fig. 3, and one may proceed with the solution of
the system of linear equations (preferably in parallel).

It is necessary to note that this algorithm could be
implemented in any simulator regardless of the hardware
description language it uses. It introduces parallelization and
speedup in the equation formulation phase that is independent
of the language (Spice, VHDL-AMS, and Verilog-AMS) and
type of models a designer uses to describe the system.

III. Parallel Simulation Algorithm Implementation

The described parallelization of the equation formulation
process is implemented in the simulator Alecsis [22]. It is a
mixed-signal and mixed-domain simulator with proprietary
hardware description language AleC++ [23] capable for
modeling and simulation of complex systems containing
different kinds of devices and subsystems [24]. Alecsis can
handle various quantities appearing as physical connections
between devices, from analog nodes and logic discrete signals,
to non-electrical quantities such as pressure and light. AleC++
is an object-oriented hardware description language developed
as a superset of C++. It provides some useful features, both for
modeling hardware components and system-level descriptions,
not found in other design languages [23]. Basic SPICE models
are built-in (C-programmed) into Alecsis, while there is also a
possibility to define semiconductor device models in AleC++.
There are built-in models for diode, MOS transistor (models
level 1, 2, 3, and BSIM model), bipolar transistor, and JFET. In
addition, there are built-in primitive components such as
resistor, capacitor, inductance, and voltage and current
generators. AleC++ allows usage of SPICE model cards with
the same syntax as in SPICE.

One possibility to model analog (continuous) devices in
AleC++ is using equation statements in a similar manner as in
VHDL-AMS. This gives a designer absolute freedom in
modeling since the contribution of the model to the system of
equations is directly given. Equations consist of regular
expressions and may contain operators for first- and second-
order time derivatives. Alecsis uses Gear methods for
numerical integration of ordinary differential equations,
Newton-Raphson method for nonlinear equations, and
modified Berry’s algorithm for solving system of linear
equations characterized by sparse matrices [20].

Figure 4 shows the implementation of the described parallel
simulation algorithm in the Alecsis simulator on a Beowulf

560 Bojan Andjelković et al. ETRI Journal, Volume 32, Number 4, August 2010

Fig. 4. Implementation of the parallel simulation algorithm on a
Beowulf cluster.

Slave nodes

Matrix
entries

KVM switch

LAN switchvp1, vp2, vi

Internet

Master node

cluster using MPI routines [25], [26]. The simulator with added
parallel simulation capability is called the parallel analog and
logic electronic circuits simulation system (pAlecsis).

The presented parallel equation formulation is implemented
using the master-slave algorithm [25]. In this algorithm,
different cluster nodes (slave nodes) simultaneously calculate
matrix entries for nonlinear circuit elements per time and per
iteration. At the same time, the master node calculates matrix
entries for specific number of nonlinear elements, as well as for
linear resistive and linear time dependent elements.

To achieve an equal load for all nodes, each node of the
cluster performs equation formulation and calculation of matrix
entries for equal number of nonlinear circuit elements and
stores the generated matrix entries in a linked list of data
structures. These structures contain the value of the matrix
entry, as well as information about matrix column and row to
which the value contributes. After generation of entries (for all
elements) on one slave, they are packed in an array and sent to
the master node using message send and receive functions
compliant with the MPI message passing standard (Fig. 4).
Such aggregation of communication messages in larger groups
before sending them across the network minimizes
communication overhead [6].

When the master node receives matrix entries from all the
slaves, it flushes them to the circuit matrix and performs one
iterative simulation step. In order to enable calculation of
matrix entries on slave nodes, the master node should send the
slaves vectors of solutions of the system of equations for the
two past time instants and previous iteration (denoted by vp1,
vp2, and vi, respectively in Fig. 4). Appropriate MPI routines
for transferring data are used to send and receive these vectors.

IV. Enabling Parallel Simulations on the Grid

The computational grid attempts to provide access to

Output “sandbox”

Input “sandbox”+

broker info

Fig. 5. Using grid resources for parallel simulations.

Input”sandbox”
(pAlecsis executable

AleC++models)

Resource broker (RB)

SE&CE info
Information service

Output “sandbox”
(simulation results)

User interface (UI)

Authorization &
authentication

Jo
b

su
bm

it
ev

en
t

Jo
b

qu
er

y

Job status
Computing

element (CE)

Storage
element (SE)

Pu
bl

is
h

Logging
book-keeping

powerful computing resources using wide area connections.
The hardware part of the grid infrastructure consists of a
number of computer clusters containing various numbers and
types of processors, amounts of memory, LAN and WAN
connectivity, and mass-storage capacity. The role of the
software components is to provide distributed services for task
submission and management, file transfer, database access,
data management, and monitoring. They also ensure security in
multiuser environment using certificates.

To enable a designer to run parallel simulations using the
grid resources, it is necessary to develop an appropriate grid
interface for a simulator. Such an interface should provide
submission of simulation jobs together with simulation models,
simulation run on a distant computer cluster and retrieval of
simulation results.

Figure 5 shows the implementation of the grid interface for
the pAlecsis simulator that enables it to perform parallel
simulations using the grid infrastructure. In order to execute
simulations using grid resources, the user should submit a
simulation job to a resource broker (RB). Simulation jobs are
described in the job description language (JDL) [27]. The
sample JDL file for simulations in pAlecsis on the grid has the
following structure:

#Type of JDL
Type = “Job”;
#Type of Job
JobType = “MPICH”;
#Number of Nodes
NodeNumber = 3;
The command/executable to run on the CE
Executable = “MPI_alec.sh”
Arguments that are needed by the executable
Arguments = “circuit.ac”;
Files to be transferred before the job execution
InputSandbox = {“MPI_alec.sh”,”circuit.ac”};
#The files to be transfered after the job execution
OutputSandbox = {“mpiexec.out”,”circuit.ar”}.

ETRI Journal, Volume 32, Number 4, August 2010 Bojan Andjelković et al. 561

The job description specifies the file(s) containing the model
for simulation described in AleC++ (circuit.ac). This set of files
is called the input sandbox, and it is initially copied to an RB.

The job description also specifies a minimal number of cluster
nodes for simulation. RB looks for the best available computing
element (CE) to execute the job. Since pAlecsis needs MPI
support on a Beowulf cluster to run simulations, it is necessary to
specify in the job description file that simulations are an MPI job
type (“MPICH” job type). It informs the RB to look for CEs
with installed MPICH runtime environment. If the simulation
ends without errors, the output files containing the results of the
simulation and specified by the user (circuit.ar) in the so-called
output sandbox in the JDL file are transferred back to the RB
node. At this point, the user can retrieve the output of his
simulation. There is also a file containing information about the
names and number of cluster nodes on the grid where the
simulation executed (mpiexec.out).

The developed grid interface enables use of a cluster on the
grid to perform complex, resource demanding simulations for
which a designer does not have appropriate computer
equipment locally. Since the simulation executes on a grid
cluster in the same way as on the local workstation cluster, the
only overhead in using the grid is additional time necessary to
submit the simulation job and retrieve simulation results from
RB.

V. Parallel Simulation Algorithm Performance
Evaluation

Performances of the presented parallel simulation algorithm
can be evaluated using simulation speedup. If a parallel
simulation executes on N single-processor cluster nodes,
simulation speedup is defined as

Simulation time on single processorSpeedup .
Simulation time on nodesN

= (1)

Performances of the parallel simulation using parallel
equation formulation for electronic circuits of various sizes are
explored in [28].

Figure 6 shows a capacitive pressure sensor with switched-
capacitor (SC) circuit for converting the capacitance value into
the output voltage [29]. This system can be used as a
benchmark to evaluate performances of the proposed parallel
simulation algorithm. φ1 and φ2 are the switching (digital)
controlling signals. The capacitive pressure sensor is a
rectangular membrane with all four edges built into the rim.
If pressure is applied, the capacitance between the membrane
and the bottom plane changes.

The behavior of the pressure sensor is described by the
following equation [19]:

Fig. 6. Capacitive pressure sensor with SC read-out electronics.

Pressure

Cr

Cs

Output

VrefVref

φ1

φ1

φ2

4 4 4 2

4 2 2 4 22 ,w w w dw d wD D D p k ph
dtx x y y dt

∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂
 (2)

where w is the displacement of the membrane, x and y are the
spatial variables, D is the bending rigidity, p is the pressure, k is
the damping coefficient, ρ is the material density, and h is the
membrane thickness.

If the sensor has a rectangular shape with dimensions L in x
direction and W in y direction, then the boundary conditions for
built-in edges are:

0
0

0
0

() 0, 0,

() 0, 0.

x x L
x x L

y y W
y y W

ww
x

ww
y

= ∨ =
= ∨ =

= ∨ =

= ∨ =

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= =⎜ ⎟∂⎝ ⎠

 (3)

Therefore, the problem of membrane simulation is solving
(2) belonging to the category of PDEs. In order to do that it is
necessary to discretize it by one of the existing methods. Here
we use the simplest one referred to as finite difference method
[30]. It replaces partial derivatives with finite differences of
close points of the membrane [19]. The discretization is
performed by defining a spatial mesh, and one equation is
defined for every mesh point. The same procedure is applied to
all PDEs representing boundary conditions. Applied
discretization formula uses 12 neighboring points for spatial
discretization of (2) (shown as white circles in Fig. 7). Thus,
PDEs for the membrane and boundary conditions are reduced
to a system of ODEs. The solution of (2) is the vector w for all
points of the mesh.

The capacitance of the pressure sensor is calculated as
follows [19]:

0 0

,
(,)

L W

x y

dxdyC
l w x y

ε
= =

=
−∫ ∫ (4)

where l is the distance between the electrodes when no
pressure is applied. This equation is nonlinear and it is possible
to discretize it using the previous set of mesh points for the
membrane. Space discretization gives

562 Bojan Andjelković et al. ETRI Journal, Volume 32, Number 4, August 2010

Fig. 7. Mesh points for spatial discretization of the membrane.

j

j+1

j+2

j–1

j–2

i i–1i–2 i+1 i+2

y

x

ml1i,j ml2i,j mr1i,j mr2i,j

nu1i,j

nu2i,j

nd1i,j

nd2i,j

ΔCi,j

, ,
,

,

, , , ,
, ,

,

1 1 1 1
, ,

2 2

i j i j
i j

i j

i j i j i j i j
i j i j

m n
C

l w

ml mr nu nd
m n

ε
⋅

Δ =
−

+ +
= =

 (5)

where ΔCi,j is a part of the total capacitance corresponding to
one mesh point. ml1i,j and mr1i,j are discretization steps in x
direction, while nu1i,j and nd1i,j are discretization steps in y
direction for mesh point (i, j). ε is dielectric constant of the gas
in the sensor chamber. The equation for ΔCi,j is repeated for
every mesh point (i, j) (Fig. 7), and all these equations
contribute to the same equation representing the total
capacitance of the sensor:

, .i j
i j

C C= Δ∑∑ (6)

The simulation algorithm of the system with capacitive
pressure sensor in Fig. 6 contains one more loop than the
algorithm in Fig. 2(b) relating to spatial discretization. It
generates a large number of nonlinear dynamic elements
described by (5) for every mesh point that contribute to the
total capacitance of the sensor. In order to simulate the
membrane behavior more precisely, it is necessary to use small
discretization steps in the mesh. It leads to a huge number of
nonlinear equations for the sensor capacitance. Therefore,
application of the previously described parallelization of
equation formulation for nonlinear elements is very appropriate.
Slave nodes of the cluster simultaneously generate
contributions (entries in the system matrix) for an equal
number of nonlinear elements given by (5).

The equation describing the electrical behavior of the
capacitive pressure sensor is

,dQ dC dvi v C
dt dt dt

= = + (7)

where Q is the charge on the capacitor electrodes and v is the
voltage across its terminals. The equation formulation process

Table 1. Beowulf cluster structure.

Master node
PC Pentium IV,

2.4 GHz, 1 GB RAM, 240 GB HDD

Slave nodes
4 X PC Pentium IV,

2.4 GHz, 512 MB RAM, 80 GB HDD
Interconnecting LAN 1 Gbit/s Ethernet

Operating system Scientific Linux

Fig. 8. Simulation results of the capacitive pressure sensor with
SC read-out electronics depicted in Fig. 6.

0.0001

500

-2e-007

8.5e-12

2

2.8

3.8

1.0e-11

1.25e-11

2e-007

7e-007

1000

0

0

0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009
Time (s)

Pressure

Capacitance

Output

Sensor[L_CENTRE][W_CENTRE]

for implementation of this model is described in detail in [20].
The complete model of the sensor contains two electrical
terminals for connecting the sensor plates, and one mechanical
terminal (pressure).

Figure 8 shows simulation results of the system in Fig. 6.
The traced quantities are the pressure, the displacement of the
membrane center, the capacitance of the sensor, and the circuit
output voltage.

Table 1 shows the structure of the Beowulf cluster used to
perform parallel simulations.

There are 2,500 discretization points for the membrane of the
sensor in the system in Fig. 6 used to evaluate parallel
simulation performances. It generates 2,400 nonlinear elements
for calculating the sensor capacitance.

Figure 9 shows parallel simulation speedup achieved for
various numbers of cluster nodes involved in the simulation of
this system. Since the simulation time is affected by overheads
that are defined by factors outside of the simulation algorithm
(time taken by the operating system, for example) the
simulations were repeated five times, and the average was used
to represent the speedup. The implemented parallel simulation

ETRI Journal, Volume 32, Number 4, August 2010 Bojan Andjelković et al. 563

Fig. 9. Parallel simulation speedup of the system in Fig. 6 for
various numbers of cluster nodes.

1.3

1.8
2

2.3

Parallel simulation speedup (system with 2,400 nonlinear elements)

2 3 4
Number of processors/nodes

5

algorithm comes in effect (reduces simulation time, that is,
increases simulation speedup) for a bigger number of
discretization points (that is, a bigger number of nonlinear
elements contributing to the total sensor capacitance). Actually,
in this case the time necessary to calculate matrix entries for all
nonlinear elements per time and per iteration exceeds time
needed to calculate matrix entries on slave nodes and send
them to the master node. It enables the parallel simulation on
the cluster to outperform the sequential simulation on a single
processor workstation. Since the master and slave nodes
calculate matrix entries for an equal number of nonlinear
elements, there is an equal load of all workstations during the
phase of equation formulation. In the phase of equation
solution, only the master node is active, since parallel solution
of the system of linear equations is not implemented. If the
simulator also solves the generated linear system in parallel, the
load of workstations will depend on the applied algorithm. One
should not forget that the speedup described in this paper is
related only to parallelization of equation formulation, without
applying a parallel solution of the system of linear equations.

Although the cluster of 5 CPUs is small, it could be used to
show the parallel simulation speedup. As reported in [31],
many legacy EDA applications show speedup only when
parallelized on 4-8 CPUs. Parallelization of EDA applications
cannot be compared to parallelization of the applications
performing big number of independent complex calculations
which can achieve higher speedup if calculations are simply
distributed on a higher number of computers/CPUs. The
algorithms used in EDA applications are very complex, and
certain communication between CPUs cannot be avoided. This
limits the speedup on a high number of computers/CPUs.

Comparison of these results to the simulation results of other
parallel simulators requires performing the described
simulation using different simulators on the same cluster.
However, these simulators are proprietary software and not
freely available. Also, some of them are not capable of
simulating MEMS described by partial differential equations.

Moreover, since the focus of this paper is the parallel
simulation algorithm and not a specific simulator
implementing such an algorithm, the paper does not discuss
any comparison between the presented simulator and other
parallel simulators.

VI. Conclusion

This paper describes the concept of a parallel simulation
algorithm for circuits and systems. It is easy to implement such
an algorithm in a simulator running on a distributed computing
platform. The algorithm introduces parallelization in the
equation formulation phase for nonlinear analog elements. It
enables distribution of calculations of matrix entries for
nonlinear elements across different cluster nodes/processors.
Therefore, the time needed for equation formulation decreases,
reducing the overall simulation time. Such parallelization of the
simulation algorithm is different from the solutions already
developed because it does not require complex partitioning
algorithms or a synchronization protocol between the partitions.
In this way, parallel simulation speedup does not depend on the
structure of the system under simulation and number of
interconnecting signals between the partitions.

In addition, this paper describes the development of grid
interface for a parallel simulator. It enables a designer to
perform demanding simulation tasks not just on the local
computer cluster, but also on distant shared clusters connected
to the grid. The interface provides all necessary features to
execute simulations in the grid environment, such as
submission of simulations jobs and models, monitoring of
simulation tasks, and retrieval of simulation results.

Performances of the developed parallel simulation algorithm
are explored in simulation of a system with capacitive pressure
sensor. The description of such a microelectromechanical
system contains a large number of nonlinear analog elements
because of spatial discretization of the sensor membrane.

The development of the pAlecsis simulator is a part of
Southeastern European grid-enabled infrastructure development
2 (SEE-GRID-2) project co-funded by the European
Commission under the FP6 research program.

References

[1] T. Sterling, Beowulf Cluster Computing with Linux, MIT Press,
Cambridge, Massachusetts, 2001.

[2] I. Foster and C. Kesselmann, The Grid: Blueprint for a New
Computing Infrastructure, San Francisco, CA: Morgan
Kaufmann, 1999.

[3] J.A.B. Fortes, R.J. Figueiredo, and M.S. Lundstrom, “Virtual
Computing Infrastructures for Nanoelectronics Simulation,” Proc.

564 Bojan Andjelković et al. ETRI Journal, Volume 32, Number 4, August 2010

IEEE, vol. 93, no. 10, Oct. 2005, pp. 1839-1847.
[4] Xyce Parallel Electronic Simulator home page, Available:

http://www.cs.sandia.gov/xyce/
[5] N. Fröhlich et al., “A New Approach for Parallel Simulation of

VLSI-Circuits on a Transistor Level,” IEEE Trans. Circuits Syst. I,
vol. 45, no. 6, 1998, pp. 601-613.

[6] D.E. Martin et al., “Analysis and Simulation of Mixed-
Technology VLSI Systems,” J. Parallel Distributed Computing,
vol. 62, no. 3, 2002, pp. 468-493.

[7] “Magma Touts First Parallel Fast Spice,” EE Times, Mar. 2007,
Available: http://www.eetasia.com/ART_8800456053_480100_
NP_c6fee15f.HTM

[8] “Enhanced HSPICE Revs up Circuit Simulation,” EE Times, Mar.
2008, Available: http://www.eetasia.com/ART_8800510252_
499495_NP_3ebd77e7.HTM

[9] “Virtuoso Accelerated Parallel Simulator” Available:
http://www.cadence.com/products/cic/accelerated_parallel/pages/
default.aspx

[10] M. Wolf and E. Boman, “Parallel Processing '08: An Increasing
Role for Combinatorial Methods in Large-Scale Parallel
Simulations,” June 2008, Available: http://www.siam.org/news/
news. php?id=1378.

[11] A. Sangiovanni-Vincentelli, C. Li-Kuan, and L. Chua, “An
Efficient Heuristic Cluster Algorithm for Tearing Large-Scale
Networks,” IEEE Trans. Circuits Syst., vol. 24, no. 12, Dec. 1977,
pp. 709-717.

[12] T. Kage, F. Kawafuji, and J. Niitsuma, “A Circuit Partitioning
Approach for Parallel Circuit Simulation,” IEICE Trans.
Fundamentals E77-A(3), 1994, pp. 461-466.

[13] L.W. Nagel, SPICE 2, a Computer Program to Simulate
Semiconductor Circuits, Memorandum ERL-M250, University of
California, Berkley Press, 1975.

[14] N. Fröhlich, V. Glöckel, and J. Fleischmann, “A New Partitioning
Method for Parallel Simulation of VLSI Circuits on Transistor
Level,” Proc. Design, Automation Test in Europe, 2000, pp. 679-
684.

[15] Zoltan: Parallel Partitioning, Load Balancing and Data-
Management Services, Available: http://www.cs.sandia.gov/
Zoltan/

[16] P. Frey et al., “SEAMS: Simulation Environment for VHDL-
AMS,” Proc. Winter Simulation Conf., 1998, pp. 539-546.

[17] M. Dimitrijević et al., “Gridification and Parallelization of
Electronic Circuit Simulator,” Proc. INDEL, Conf. Ind. Electron.,
2006, pp. 95-100.

[18] M. Jakovljević et al., “Transient Electro-Thermal Simulation of
Microsystems with Space-Continuous Thermal Models in
Analogue Behavioural Simulator,” Microelectronics and
Reliability, vol. 40, no. 3, 2000, pp. 507-516.

[19] Ž. Mrčarica, “Modelling of Microelectromechanical Devices and
Simulation of Systems Using Hardware Description Language,”

(doctoral dissertation), Technical University Vienna, 1995.
[20] V. Litovski and M. Zwolinski, VLSI Circuit Simulation

Optimization, London: Chapman and Hall, 1997.
[21] A.R. Newton and A.L. Sangiovanni-Vincentelli, “Relaxation-

Based Electrical Simulation,” IEEE Trans. Electron. Devices, vol.
30, no. 9, Sept. 1983, pp. 1184-1207.

[22] D. Glozić et al., “Alecsis, the Simulator,” Laboratory for
Electronic Design Automation, Faculty of Electronic Engineering,
University of Niš, Serbia, 1996, Available:
http://leda.elfak.ni.ac.yu/ projects/Alecsis/alecsis.htm

[23] V. Litovski, D. Maksimović, and Ž. Mrčarica, “Mixed-Signal
Modeling with AleC++: Specific Features of the HDL,”
Simulation Practice and Theory, vol. 8, 2001, pp. 433-449.

[24] Ž. Mrčarica et al., “Mechatronic Simulation Using Alecsis:
Anatomy of the Simulator,” Proc. Eurosim, 1995, pp. 651-656.

[25] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel programming with the Message-Passing Interface, 2nd
ed., Cambridge, Massachusetts: MIT Press, 1999.

[26] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: Advanced
Features of the Message-Passing Interface, Cambridge,
Massachusetts: MIT Press, 1999.

[27] S. Burke et al., “gLite3 User Guide,” Available:
http://edms.cern.ch/ file/722398/1.1/gLite-3-UserGuide.pdf, 2007

[28] B. Anđelković, V. Litovski, and P. Petković, “Implementation and
Performance Analysis of Parallel Circuit Simulator on Beowulf
Cluster,” Proc. ETRAN Conf., 2007, (Proc. on CD, EL1.6.)

[29] Ž. Mrčarica et al., “Describing Space-Continuous Models of
Microelectromechanical Devices for Behavioural Simulation,”
Proc. EURO-DAC Euro. Design Automation Conf. with EURO-
VHDL, 1996, pp. 316-321.

[30] Ž. Mrčarica et al., “Integrated Simulator for MEMS Using FEM
Implementation in AHDL and Frontal Solver for Large-Sparse
System of Equations,” Proc. Design Test Microsyst., 1999, pp.
271-278.

[31] “Intel TV Interview: Parallelizing Legacy EDA Applications,”
Available: http://www.cadence.com/Community/blogs/ii/archive/
2009/12/16/intel-tv-interview-parallelizing-legacy-eda-applications.
aspx

Bojan Andjelković received his MSc from the
Faculty of Electronic Engineering, University of
Niš, Serbia, in 1999. He worked there as a
teaching and research assistant until 2007. His
research interests include the parallelization of
EDA applications and SoC design. Currently he
works as a design engineer for Fujitsu

Semiconductor Europe, Germany.

ETRI Journal, Volume 32, Number 4, August 2010 Bojan Andjelković et al. 565

Vančo B. Litovski received his BSc, MSc, and
PhD from the Faculty of Electronic Engineering,
University of Niš, Serbia. His research interests
include electronic filters, electronic circuits,
systems modeling and simulation, and integrated
circuits design. He is the author of several
hundred scientific papers and scores of scholarly

books. He received the Tesla and the Savastano Awards.

Volker Zerbe received his MS (Diploma) from
the Technical University, Sofia (Bulgaria), in
1986. From 1986 to 1991, as research assistant,
he developed system software for multiprocessor
robot systems. In 1991, he received his PhD from
the Ilmenau University of Technology, Germany.
Since 1991, he has been a senior assistant at the

Department of System and Software Engineering. Between 1992/1993
and 2007/2008, he was the Head of the Department at the Ilmenau
University of Technology. His research interests include model-based
mission/system design of embedded systems, design of parallel systems,
and avionic and automotive applications.

