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Parallel simulation is an efficient way to cope with long 
runtimes and high computational requirements in 
simulations of modern complex integrated electronic 
circuits and systems. This paper presents an algorithm for 
parallel simulation based on parallelization in equation 
formulation and simultaneous calculation of matrix 
contributions for nonlinear analog elements. In addition, 
the paper describes the development of a grid interface for 
a parallel simulator that enables a designer to perform 
simulations on distant computer clusters. Performances of 
the developed parallel simulation algorithm are evaluated 
by simulation of a microelectromechanical system. 
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I. Introduction 

Rapid growth of the complexity in modern mixed-signal 
integrated circuit (IC) and system-on-a-chip (SoC) designs 
demands powerful simulators capable of quickly analyzing and 
validating the system’s functionality as a whole. The simulation 
process of large-scale models describing today’s ICs is 
memory and computationally intensive, and algorithmically 
complex. These properties pertain to the fact that a large 
number of ordinary (and, potentially, partial) nonlinear 
differential equations have to be solved for long running 
excitations. One should not forget that within some design 
activities such as test vector verification or circuit optimization, 
many of the repetitive simulations are expected to be 
performed for the same system. In addition, even a single 
simulation run creates a huge amount of data that needs to be 
processed. Because of all these reasons, simulation runtimes 
are very long and lead to slow design process. 

An effective solution to this problem is to parallelize the 
simulation algorithm and use a distributed computing platform 
such as a cluster of workstations to run simulations. In such an 
approach, the simulator distributes complex calculations, 
necessary for the simulation process, across different 
workstations/processors, and executes them simultaneously. 

The development of low-cost personal computers and 
gigabit LAN network connections offers a possibility for 
implementation of inexpensive distributed multiprocessor 
systems such as computer clusters. A cluster has many 
advantages over a classic supercomputer: it is inexpensive, 
flexible, easy to use, easy to maintain, and highly stackable. 
One particular implementation of this approach, involving 
open source system software and dedicated networks, has 
acquired the name “Beowulf” [1]. 
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The growth of Internet and WAN links of great capacity and 
speed led to development of the computational grid. In the 
same way as power grid provides electrical power, 
computational power can be obtained on demand from a 
network of providers, potentially belonging to the entire 
Internet. The grid is a highly heterogeneous and a 
geographically widely distributed computing system consisting 
of interconnected shared computer resources (computer 
clusters) that users can utilize for their demanding tasks. At the 
beginning, this paradigm had been strictly scientific and 
academic; but, as in the case of the Internet, it became widely 
accepted and popular. One of the most common definitions is 
that a computational grid is a hardware and software 
infrastructure that provides dependable, consistent, pervasive, 
and inexpensive access to high-end computational capabilities 
which enables on-demand access to computing, data, and 
services [2]. Grid computing is suitable for intensive 
calculations that require significant processing power, large 
operating memory, as well as storage capacity. The simulation 
of ICs is paradigmatic example of such calculations [3]. 

1. Related Work 

Several parallel simulators of electronic circuits have been 
developed recently, such as Xyce [4], TITAN [5], and SEAMS 
[6]. FineSim Spice from Magma Inc. is a commercial transistor-
level circuit simulator for mixed-signal SoCs that can run over 
distributed networks or multi-CPU workstations [7]. Several 
electronic design automation (EDA) companies have recently 
created parallel simulators for analog and mixed-signal designs 
running on multicore computer architectures. The simulators 
such as HSPICE [8] and Virtuoso Accelerated Parallel Simulator 
[9] use multithreading simulation capabilities to exploit 
multicore processors in simulation of large post-layout designs. 

In order to minimize the simulation runtime, parallel 
simulators partition the data and computation over multiple 
workstations and processors/cores. The main goal of the applied 
partitioning algorithms is to minimize communication between 
the workstations/processors and achieve their equal load [10]. 

One of the first published algorithms for partitioning at 
transistor level is Node Tearing [11]. However, it was applied 
on a single-processor computer, and the main reason for its 
implementation was the intractable complexity of the whole 
system. This algorithm starts from an input voltage source and 
gathers adjacent elements until it reaches a specified partition 
size. If there are several possibilities for the selection of an 
adjacent element, the algorithm takes the node with fewer 
connections to other partitions. 

Another approach for partitioning simply splits the ASCII 
file containing the circuit description and improves this initial 

partitioning by shifting components [12]. 
TITAN and Xyce are parallel transistor level simulators that 

use SPICE [13] as modeling language. TITAN uses a complex 
partitioning algorithm COPART to split the circuit description 
and distribute generated partitions to different 
workstations/processors. The partitioning is based on 
evaluating the level of coupling between adjacent elements, 
and the generated partitions (SPICE subcircuits) tend to have 
small number of interconnect nodes and well-balanced sizes 
[14]. Partitioning cuts the nets between partitions, that is, 
interconnect nets. Parallel analog simulator handles these nets 
as I/O nets for the related subcircuits and connects virtual 
voltage sources to these I/O’s.  

After partitioning of the circuit all parts are simulated in 
parallel as separate circuits. The partitioning algorithm also 
creates a master partition that takes care of the consistency of 
the circuit variables at the connections and accommodates local 
time agents to the main simulation time agent for all subcircuits. 
This “synchronization” is not to be confused with inter-
processor synchronization that will be necessary in parallel 
simulation. The master process evaluates the network variables 
within the connection network while the slave processors wait 
(that is, stop the parallel simulation). The connection network 
calculation is time consuming, and simulation runtime 
increases with each additional interconnecting signal between 
the partitions [14]. 

In Xyce a single, a large nonlinear problem is distributed 
across a large number of processors on the matrix level. The 
partitioning is performed on the graph of the problem, after the 
problem has been flattened [15]. 

The amount of parallelism inherent to the circuit limits the 
partitioning success [6] and some of the algorithms give good 
results only on mutually independent subcircuits. However, in 
typical ICs, the elements are highly connected including strong 
feed-back signals, and partitioning generates many connections 
between the partitions causing significant inter-partition load 
and consequently longer simulation runtimes. 

Techniques for allowing each subcircuit to determine its own 
time steps, and hence to optimize the simulation for each 
partition, have been proposed, too. However, most of the 
simulators use the same time step for all partitions due to the 
fact that an appropriate complex subcircuits synchronization 
algorithm is necessary to exchange required simulation data 
(values of voltage for interconnect nets) between the circuit 
partitions. 

SEAMS is a VHDL-AMS simulator that implements 
parallel digital simulation. In order to perform parallel mixed-
signal simulation, the parallel digital simulator is synchronized 
with an analog simulation kernel. Parallel analog simulation in 
SEAMS is based on grouping and solving for the unknowns 
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occurring in a connected set of equations [16]. A single 
connected set of equations is referred to as an “analog island.” 
Partitioning is performed such that no two “analog islands” 
may communicate during simulation. However, it is very 
difficult, if not impossible, to determine sets of equations 
independent from each other, and the results of this algorithm 
may vary for different circuits and systems (for example, 
systems with strong feedback) depending on the properties of 
the equations describing them. 

While a broad survey of various parallel simulator 
implementations and algorithms can be found in [17], in this 
paper, we present a new and original concept of development, 
a parallel simulation algorithm that could be implemented in a 
simulator to speedup the simulation process. This algorithm 
avoids all complex circuit partitioning algorithms which lead to 
simple parallelization. It is based on the fact that in any 
implementation of a circuit analysis algorithm, two steps are to 
be performed in a sequence: equation formulation and equation 
solution. Accordingly, parallelization is to be implemented in 
these steps separately. To come to the final idea on the concept 
of the new algorithm, we first claim that the problem of parallel 
solution of a system of equations is already solved in any 
respect. That means existing subroutines (IP software 
packages) for parallel solution of sparse systems of linear 
equations may be used and inserted into any simulation 
program. Second, being aware that all electronic circuits are 
nonlinear ones, one should have in mind that for these kind of 
circuits, the equation formulation step of the simulation 
algorithm requires much computational effort and time. 
Therefore, our algorithm implements parallelization of the 
equation formulation by distributing to different processors the 
calculation of contributions of the nonlinear elements to the 
system of equations. That leads to reduction in the overall 
simulation runtime. In order to explore the efficiency of the 
algorithm, it was implemented in a simulator running on a 
Beowulf type workstation cluster. A microelectromechanical 
system with a capacitive pressure sensor was used to evaluate 
performances of the developed parallel simulation algorithm. 
In addition, we describe the implementation of the grid 
interface for a parallel simulator that enables use of distant 
computer clusters on the grid network to perform simulations. 

II. Parallelization of the Simulation Algorithm 

In order to simulate a complex mixed-signal and mixed-
mode electronic system, it is necessary to describe (model) it. 
Mixed-mode systems are described using: 

 
1. Algebraic equations 
2. Ordinary differential equations (ODE) 

3. Partial differential equations (PDE) 
4. Abstract system-level behavioral descriptions 
5. Logic functions (systems of discrete equations). 
 
Algebraic equations describe the resistive, time independent 

part, whereas nonlinear ODEs describe the dynamic part of the 
system. Nonlinear ODEs are discretized using finite difference 
formulae (usually referred to as numerical integration rules) 
that reduce them to a system of nonlinear algebraic equations. 
In the simulation of microelectromechanical systems   
(MEMS), electronic systems containing transmission lines, and 
magnetomechanical components, or when electrothermal 
simulations are performed [18], PDEs are used for modeling 
these specific parts and phenomena within the system. In order 
to obtain a set of ordinary differential equations, space 
discretization is performed, introducing new time dependent 
variables distributed in space. Therefore, PDEs introduce new 
sets of ODEs, whose number is usually very large, depending 
on the discretization mesh [19]. The resulting ODEs are then 
discretized to produce a nonlinear algebraic equation system. 
All this generates a potentially large system of nonlinear 
equations to be solved at a large number of time instants 
depending on the properties of the system under simulation and 
the stimulus signals (number of events at the input). Thus, one 
comes down to the problem of formulation and solution of a 
system of nonlinear equations that is solved iteratively, with the 
help of linearization, that is, by application of Newton methods. 
There are two loops during the simulation flow: a time loop for 
incrementing simulation time, and inside it, an iterative loop for 
solving the system of nonlinear equations until convergence is 
reached. Since all electronic components (transistors, diodes 
etc.) are described by nonlinear models, the calculation of all 
derivatives that are necessary for the linearization (within the 
equation formulation phase) is a very time consuming part of 
the simulation process. The number of iterations per time 
instant depends on the properties of the system to be simulated, 
on the effectiveness of the so called predictor algorithm that 
creates initial solutions for the iterative process at every time 
instant, and on the equation formulation/solution algorithm that 
is implemented at the linearized level. Even for small systems, 
given a good initial solution, there are, in general, several 
iterations per time instant. 

In circuit and system simulation, it is necessary to formulate 
the equations describing the system automatically. The 
modified nodal analysis (MNA) method is practically a 
standard for that purpose [20]. This method determines the 
contribution of every particular circuit element to the system of 
equations and enables automatic creation of the equations by 
successive addition of particular contributions in the circuit 
matrix and right-hand side vector. This means that in order to 
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Fig. 1. Simple circuit with nonlinear elements and its matrix to
illustrate equation formulation. 
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create system of linear equations in each iteration, one need to 
scan all elements in the circuit description, generate discretized 
models, generate linearized models for nonlinear elements, and 
finally add the contribution of every element to the matrix of 
the system of linear equations and right-hand side vector. In 
order to illustrate this, Fig. 1 shows a simple circuit containing 
three diodes. This figure also shows the circuit matrix with 
contribution of all elements. 

Here n denotes time steps counter (the time is calculated as 
t=n×h where h is the time increment). m denotes the number 
of iteration for a specific time instant. The simulator 
recalculates in each iteration contribution of diodes   

1,
d1,

d d d/ ,
n mun m

sG i u I eλλ
++ = ∂ ∂ = which are derivatives of diode 

current per voltage between its terminals. 
In the following paragraphs, we will consider and compare 

in more detail the existing algorithm with circuit partitioning 
and the new algorithm with parallel equation formulation. 
Figure 2(a) shows a typical algorithm for parallel simulation of 
nonlinear dynamic electronic circuits in a time domain. It is 
based on partitioning of the circuit model and simulation of the 
generated partitions in parallel [5]. As Fig. 2(a) shows, when 
the iterative analysis of a partition for a specific time instant 
finishes, the obtained result is not final. It is necessary for 
voltages at the connections between the partitions to be equal 
for each partition. In order to adjust these node voltages, one 
additional iterative loop is executed (denoted in the Fig. 2(a) as 
interconnect voltage adjustment loop). Therefore, there is an 
additional overhead in simulation time in this algorithm 
required to adjust interconnect voltages between the partitions. 

Figure 2(b) shows a new approach to parallel simulation. In 
this algorithm no partitions are made and, consequently, it is 
not necessary to calculate interconnect voltages. To explain the 
idea we provide the following considerations. 

During the simulation of a nonlinear dynamic electronic 
circuit at each iteration and time instant, it is necessary to 
recalculate the matrix entries of the system of linear equations. 
The entries coming from nonlinear elements are derivatives of  

 

Fig. 2. Simulation algorithms for nonlinear dynamic circuits in 
time domain: (a) with partitioning of the circuit and (b) 
new algorithm based on parallel equation formulation. 
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the nonlinear equations, and the simulator computes them 
within specific subroutines. 

A large number of matrix entries, iterations and time instants 
requires an immense computational effort during simulation. 
As demonstrated in [21], for small circuits with the number of 
nodes N<20, the majority of simulation time is spent during the 
equation formulation phase and forming the circuit matrix. 
When the size of the circuit grows, the time required for 
equation formulation increases linearly with the number of 
circuit elements, and therefore, with the number of equations 
used to model them. Therefore, the calculation of matrix entries 
and equation formulation for nonlinear circuit elements should 
be parallelized. The part of the simulation algorithm that it is 
possible to parallelize is highlighted in Fig. 2(b). This 
parallelization is an additional mechanism that can further 
accelerate the simulation together with parallelization of the 
solution phase of the system of linear equations that succeeds 
the equation formulation phase. 

If one considers the circuit matrix as a sum of several 
matrices, the number of which is equal to the number of 
processors used in the simulation, it is possible to create the 
whole circuit matrix by creating its parts and then summing 
them. Figure 3 illustrates that process. Every submatrix 
contains entries for a specific (assigned) number of nonlinear 
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Fig. 3. Parallelization of equation formulation for nonlinear
circuit elements. 
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circuit elements. There is no need for a special criterion for 
allocation of the circuit elements to a specific processor (that is 
a submatrix). The total list of nonlinear elements is simply 
divided into sublists with an equal number of nonlinear 
elements. The number of elements in a sublist is determined by 
simply dividing the total number of nonlinear circuit elements 
by the number of processors. Then, every processor calculates 
submatrix entries for elements in one partition. 

Such parallelization of the simulation algorithm is a different 
approach from already developed solutions. The main 
differences between the new algorithm based on parallel 
equation formulation and the existing algorithms with circuit 
partitioning are: 

• The new algorithm does not require sophisticated circuit and 
task partitioning algorithms to create partitions of equal size 
and minimal number of interconnect points. There is no 
partitioning of the circuit. However, the total number of 
nonlinear elements is divided into equal subsets which are 
assigned to processors. 

• Since there is no partitioning, parallel simulation speedup 
does not depend on the circuit structure and number of 
interconnections between the partitions. Calculations of 
matrix contributions are completely independent of each 
other. 

• There is no additional overhead in simulation time caused 
by the adjustment of interconnect voltages between 
partitions. 

• There is no need for synchronization protocols to exchange 
interconnect data between the partitions, so the new 
algorithm is easy to implement on a distributed computing 
platform (for example, the Beowulf cluster). 

The generation of matrix entries for linear resistive and linear 
dynamic elements is performed on one processor, since these 
calculations may be performed outside of the iterative loop. 
Moreover, the matrix contributions for linear resistive elements 
are calculated only once outside time and iterative loops, while 

entries for linear time dependent elements are calculated at 
every time instant outside iterative loop. All this reduces the 
overall time necessary for equation formulation. When parallel 
generation of matrix entries for all nonlinear elements is 
finished, the complete circuit matrix is formed (aggregated) as 
depicted in Fig. 3, and one may proceed with the solution of 
the system of linear equations (preferably in parallel). 

It is necessary to note that this algorithm could be 
implemented in any simulator regardless of the hardware 
description language it uses. It introduces parallelization and 
speedup in the equation formulation phase that is independent 
of the language (Spice, VHDL-AMS, and Verilog-AMS) and 
type of models a designer uses to describe the system. 

III. Parallel Simulation Algorithm Implementation 

The described parallelization of the equation formulation 
process is implemented in the simulator Alecsis [22]. It is a 
mixed-signal and mixed-domain simulator with proprietary 
hardware description language AleC++ [23] capable for 
modeling and simulation of complex systems containing 
different kinds of devices and subsystems [24]. Alecsis can 
handle various quantities appearing as physical connections 
between devices, from analog nodes and logic discrete signals, 
to non-electrical quantities such as pressure and light. AleC++ 
is an object-oriented hardware description language developed 
as a superset of C++. It provides some useful features, both for 
modeling hardware components and system-level descriptions, 
not found in other design languages [23]. Basic SPICE models 
are built-in (C-programmed) into Alecsis, while there is also a 
possibility to define semiconductor device models in AleC++. 
There are built-in models for diode, MOS transistor (models 
level 1, 2, 3, and BSIM model), bipolar transistor, and JFET. In 
addition, there are built-in primitive components such as 
resistor, capacitor, inductance, and voltage and current 
generators. AleC++ allows usage of SPICE model cards with 
the same syntax as in SPICE. 

One possibility to model analog (continuous) devices in 
AleC++ is using equation statements in a similar manner as in 
VHDL-AMS. This gives a designer absolute freedom in 
modeling since the contribution of the model to the system of 
equations is directly given. Equations consist of regular 
expressions and may contain operators for first- and second- 
order time derivatives. Alecsis uses Gear methods for 
numerical integration of ordinary differential equations, 
Newton-Raphson method for nonlinear equations, and 
modified Berry’s algorithm for solving system of linear 
equations characterized by sparse matrices [20]. 

Figure 4 shows the implementation of the described parallel 
simulation algorithm in the Alecsis simulator on a Beowulf  
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Fig. 4. Implementation of the parallel simulation algorithm on a
Beowulf cluster. 
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cluster using MPI routines [25], [26]. The simulator with added 
parallel simulation capability is called the parallel analog and 
logic electronic circuits simulation system (pAlecsis). 

The presented parallel equation formulation is implemented 
using the master-slave algorithm [25]. In this algorithm, 
different cluster nodes (slave nodes) simultaneously calculate 
matrix entries for nonlinear circuit elements per time and per 
iteration. At the same time, the master node calculates matrix 
entries for specific number of nonlinear elements, as well as for 
linear resistive and linear time dependent elements. 

To achieve an equal load for all nodes, each node of the 
cluster performs equation formulation and calculation of matrix 
entries for equal number of nonlinear circuit elements and 
stores the generated matrix entries in a linked list of data 
structures. These structures contain the value of the matrix 
entry, as well as information about matrix column and row to 
which the value contributes. After generation of entries (for all 
elements) on one slave, they are packed in an array and sent to 
the master node using message send and receive functions 
compliant with the MPI message passing standard (Fig. 4). 
Such aggregation of communication messages in larger groups 
before sending them across the network minimizes 
communication overhead [6]. 

When the master node receives matrix entries from all the 
slaves, it flushes them to the circuit matrix and performs one 
iterative simulation step. In order to enable calculation of 
matrix entries on slave nodes, the master node should send the 
slaves vectors of solutions of the system of equations for the 
two past time instants and previous iteration (denoted by vp1, 
vp2, and vi, respectively in Fig. 4). Appropriate MPI routines 
for transferring data are used to send and receive these vectors. 

IV. Enabling Parallel Simulations on the Grid 

The computational grid attempts to provide access to  
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powerful computing resources using wide area connections. 
The hardware part of the grid infrastructure consists of a 
number of computer clusters containing various numbers and 
types of processors, amounts of memory, LAN and WAN 
connectivity, and mass-storage capacity. The role of the 
software components is to provide distributed services for task 
submission and management, file transfer, database access, 
data management, and monitoring. They also ensure security in 
multiuser environment using certificates. 

To enable a designer to run parallel simulations using the 
grid resources, it is necessary to develop an appropriate grid 
interface for a simulator. Such an interface should provide 
submission of simulation jobs together with simulation models, 
simulation run on a distant computer cluster and retrieval of 
simulation results. 

Figure 5 shows the implementation of the grid interface for 
the pAlecsis simulator that enables it to perform parallel 
simulations using the grid infrastructure. In order to execute 
simulations using grid resources, the user should submit a 
simulation job to a resource broker (RB). Simulation jobs are 
described in the job description language (JDL) [27]. The 
sample JDL file for simulations in pAlecsis on the grid has the 
following structure: 

#Type of JDL 
Type = “Job”; 
#Type of Job 
JobType = “MPICH”; 
#Number of Nodes 
NodeNumber = 3; 
# The command/executable to run on the CE 
Executable = “MPI_alec.sh” 
# Arguments that are needed by the executable 
Arguments = “circuit.ac”; 
# Files to be transferred before the job execution 
InputSandbox = {“MPI_alec.sh”,”circuit.ac”}; 
#The files to be transfered after the job execution 
OutputSandbox = {“mpiexec.out”,”circuit.ar”}. 
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The job description specifies the file(s) containing the model 
for simulation described in AleC++ (circuit.ac). This set of files 
is called the input sandbox, and it is initially copied to an RB. 

The job description also specifies a minimal number of cluster 
nodes for simulation. RB looks for the best available computing 
element (CE) to execute the job. Since pAlecsis needs MPI 
support on a Beowulf cluster to run simulations, it is necessary to 
specify in the job description file that simulations are an MPI job 
type (“MPICH” job type). It informs the RB to look for CEs 
with installed MPICH runtime environment. If the simulation 
ends without errors, the output files containing the results of the 
simulation and specified by the user (circuit.ar) in the so-called 
output sandbox in the JDL file are transferred back to the RB 
node. At this point, the user can retrieve the output of his 
simulation. There is also a file containing information about the 
names and number of cluster nodes on the grid where the 
simulation executed (mpiexec.out). 

The developed grid interface enables use of a cluster on the 
grid to perform complex, resource demanding simulations for 
which a designer does not have appropriate computer 
equipment locally. Since the simulation executes on a grid 
cluster in the same way as on the local workstation cluster, the 
only overhead in using the grid is additional time necessary to 
submit the simulation job and retrieve simulation results from 
RB. 

V. Parallel Simulation Algorithm Performance 
Evaluation 

Performances of the presented parallel simulation algorithm 
can be evaluated using simulation speedup. If a parallel 
simulation executes on N single-processor cluster nodes, 
simulation speedup is defined as 

Simulation time on single processorSpeedup .
Simulation time on nodesN

=     (1) 

Performances of the parallel simulation using parallel 
equation formulation for electronic circuits of various sizes are 
explored in [28]. 

Figure 6 shows a capacitive pressure sensor with switched-
capacitor (SC) circuit for converting the capacitance value into 
the output voltage [29]. This system can be used as a 
benchmark to evaluate performances of the proposed parallel 
simulation algorithm. φ1 and φ2 are the switching (digital) 
controlling signals. The capacitive pressure sensor is a 
rectangular membrane with all four edges built into the rim.  
If pressure is applied, the capacitance between the membrane 
and the bottom plane changes. 

The behavior of the pressure sensor is described by the 
following equation [19]: 

 

Fig. 6. Capacitive pressure sensor with SC read-out electronics.
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where w is the displacement of the membrane, x and y are the 
spatial variables, D is the bending rigidity, p is the pressure, k is 
the damping coefficient, ρ is the material density, and h is the 
membrane thickness. 

If the sensor has a rectangular shape with dimensions L in x 
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built-in edges are: 
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= ∨ =

= ∨ =

= ∨ =

∂⎛ ⎞= =⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= =⎜ ⎟∂⎝ ⎠

        (3) 

Therefore, the problem of membrane simulation is solving 
(2) belonging to the category of PDEs. In order to do that it is 
necessary to discretize it by one of the existing methods. Here 
we use the simplest one referred to as finite difference method 
[30]. It replaces partial derivatives with finite differences of 
close points of the membrane [19]. The discretization is 
performed by defining a spatial mesh, and one equation is 
defined for every mesh point. The same procedure is applied to 
all PDEs representing boundary conditions. Applied 
discretization formula uses 12 neighboring points for spatial 
discretization of (2) (shown as white circles in Fig. 7). Thus, 
PDEs for the membrane and boundary conditions are reduced 
to a system of ODEs. The solution of (2) is the vector w for all 
points of the mesh. 

The capacitance of the pressure sensor is calculated as 
follows [19]: 

0 0

,
( , )

L W

x y

dxdyC
l w x y

ε
= =

=
−∫ ∫              (4) 

where l is the distance between the electrodes when no 
pressure is applied. This equation is nonlinear and it is possible 
to discretize it using the previous set of mesh points for the 
membrane. Space discretization gives 
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Fig. 7. Mesh points for spatial discretization of the membrane.
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where ΔCi,j is a part of the total capacitance corresponding to 
one mesh point. ml1i,j and mr1i,j are discretization steps in x 
direction, while nu1i,j and nd1i,j are discretization steps in y 
direction for mesh point (i, j). ε is dielectric constant of the gas 
in the sensor chamber. The equation for ΔCi,j is repeated for 
every mesh point (i, j) (Fig. 7), and all these equations 
contribute to the same equation representing the total 
capacitance of the sensor: 

, .i j
i j

C C= Δ∑∑             (6) 

The simulation algorithm of the system with capacitive 
pressure sensor in Fig. 6 contains one more loop than the 
algorithm in Fig. 2(b) relating to spatial discretization. It 
generates a large number of nonlinear dynamic elements 
described by (5) for every mesh point that contribute to the 
total capacitance of the sensor. In order to simulate the 
membrane behavior more precisely, it is necessary to use small 
discretization steps in the mesh. It leads to a huge number of 
nonlinear equations for the sensor capacitance. Therefore, 
application of the previously described parallelization of 
equation formulation for nonlinear elements is very appropriate. 
Slave nodes of the cluster simultaneously generate 
contributions (entries in the system matrix) for an equal 
number of nonlinear elements given by (5). 

The equation describing the electrical behavior of the 
capacitive pressure sensor is 

,dQ dC dvi v C
dt dt dt

= = +            (7) 

where Q is the charge on the capacitor electrodes and v is the 
voltage across its terminals. The equation formulation process  

Table 1. Beowulf cluster structure. 

Master node 
PC Pentium IV, 

2.4 GHz, 1 GB RAM, 240 GB HDD 

Slave nodes 
4 X PC Pentium IV, 

2.4 GHz, 512 MB RAM, 80 GB HDD 
Interconnecting LAN 1 Gbit/s Ethernet 

Operating system Scientific Linux 

 

 

Fig. 8. Simulation results of the capacitive pressure sensor with 
SC read-out electronics depicted in Fig. 6. 
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for implementation of this model is described in detail in [20]. 
The complete model of the sensor contains two electrical 
terminals for connecting the sensor plates, and one mechanical 
terminal (pressure). 

Figure 8 shows simulation results of the system in Fig. 6. 
The traced quantities are the pressure, the displacement of the 
membrane center, the capacitance of the sensor, and the circuit 
output voltage. 

Table 1 shows the structure of the Beowulf cluster used to 
perform parallel simulations. 

There are 2,500 discretization points for the membrane of the 
sensor in the system in Fig. 6 used to evaluate parallel 
simulation performances. It generates 2,400 nonlinear elements 
for calculating the sensor capacitance. 

Figure 9 shows parallel simulation speedup achieved for 
various numbers of cluster nodes involved in the simulation of 
this system. Since the simulation time is affected by overheads 
that are defined by factors outside of the simulation algorithm 
(time taken by the operating system, for example) the 
simulations were repeated five times, and the average was used 
to represent the speedup. The implemented parallel simulation  
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Fig. 9. Parallel simulation speedup of the system in Fig. 6 for
various numbers of cluster nodes. 
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algorithm comes in effect (reduces simulation time, that is, 
increases simulation speedup) for a bigger number of 
discretization points (that is, a bigger number of nonlinear 
elements contributing to the total sensor capacitance). Actually, 
in this case the time necessary to calculate matrix entries for all 
nonlinear elements per time and per iteration exceeds time 
needed to calculate matrix entries on slave nodes and send 
them to the master node. It enables the parallel simulation on 
the cluster to outperform the sequential simulation on a single 
processor workstation. Since the master and slave nodes 
calculate matrix entries for an equal number of nonlinear 
elements, there is an equal load of all workstations during the 
phase of equation formulation. In the phase of equation 
solution, only the master node is active, since parallel solution 
of the system of linear equations is not implemented. If the 
simulator also solves the generated linear system in parallel, the 
load of workstations will depend on the applied algorithm. One 
should not forget that the speedup described in this paper is 
related only to parallelization of equation formulation, without 
applying a parallel solution of the system of linear equations. 

Although the cluster of 5 CPUs is small, it could be used to 
show the parallel simulation speedup. As reported in [31], 
many legacy EDA applications show speedup only when 
parallelized on 4-8 CPUs. Parallelization of EDA applications 
cannot be compared to parallelization of the applications 
performing big number of independent complex calculations 
which can achieve higher speedup if calculations are simply 
distributed on a higher number of computers/CPUs. The 
algorithms used in EDA applications are very complex, and  
certain communication between CPUs cannot be avoided. This 
limits the speedup on a high number of computers/CPUs. 

Comparison of these results to the simulation results of other 
parallel simulators requires performing the described 
simulation using different simulators on the same cluster. 
However, these simulators are proprietary software and not 
freely available. Also, some of them are not capable of 
simulating MEMS described by partial differential equations. 

Moreover, since the focus of this paper is the parallel 
simulation algorithm and not a specific simulator 
implementing such an algorithm, the paper does not discuss 
any comparison between the presented simulator and other 
parallel simulators. 

VI. Conclusion 

This paper describes the concept of a parallel simulation 
algorithm for circuits and systems. It is easy to implement such 
an algorithm in a simulator running on a distributed computing 
platform. The algorithm introduces parallelization in the 
equation formulation phase for nonlinear analog elements. It 
enables distribution of calculations of matrix entries for 
nonlinear elements across different cluster nodes/processors. 
Therefore, the time needed for equation formulation decreases, 
reducing the overall simulation time. Such parallelization of the 
simulation algorithm is different from the solutions already 
developed because it does not require complex partitioning 
algorithms or a synchronization protocol between the partitions. 
In this way, parallel simulation speedup does not depend on the 
structure of the system under simulation and number of 
interconnecting signals between the partitions. 

In addition, this paper describes the development of grid 
interface for a parallel simulator. It enables a designer to 
perform demanding simulation tasks not just on the local 
computer cluster, but also on distant shared clusters connected 
to the grid. The interface provides all necessary features to 
execute simulations in the grid environment, such as 
submission of simulations jobs and models, monitoring of 
simulation tasks, and retrieval of simulation results. 

Performances of the developed parallel simulation algorithm 
are explored in simulation of a system with capacitive pressure 
sensor. The description of such a microelectromechanical 
system contains a large number of nonlinear analog elements 
because of spatial discretization of the sensor membrane. 

The development of the pAlecsis simulator is a part of 
Southeastern European grid-enabled infrastructure development 
2 (SEE-GRID-2) project co-funded by the European 
Commission under the FP6 research program. 
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