• Title/Summary/Keyword: Analog front end

Search Result 92, Processing Time 0.027 seconds

Recent Developments in High Resolution Delta-Sigma Converters

  • Kim, Jaedo;Roh, Jeongjin
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • This review paper describes the overall operating principle of a discrete-time delta-sigma modulator (DTDSM) and a continuous-time delta-sigma modulator (CTDSM) using a switched-capacitor (SC). In addition, research that has solved the problems related to each delta-sigma modulator (DSM) is introduced, and the latest developments are explained. This paper describes the chopper-stabilization technique that mitigates flicker noise, which is crucial for the DSM. In the case of DTDSM, this paper addresses the problems that arise when using SC circuits and explains the importance of the operational transconductance amplifier performance of the first integrator of the DSM. In the case of CTDSM, research that has reduced power consumption, and addresses the problems of clock jitter and excess loop delay is described. The recent developments of the analog front end, which have become important due to the increasing use of wireless sensors, is also described. In addition, this paper presents the advantages and disadvantages of the three-opamp instrumentation amplifier (IA), current feedback IA (CFIA), resistive feedback IA, and capacitively coupled IA (CCIA) methods for implementing instrumentation amplifiers in AFEs.

The Development of 12 channel ECG Measurement and Arrhythmia Discrimination System with High Performance Medical Analog Front-End(AFE) (고성능 의료용 아날로그 프론트 엔드(AFE)를 이용한 12채널 심전도 획득 및 부정맥 판단 시스템 개발)

  • Ko, Hyun-Chul;Lee, SeungHwan;Heo, JungHyun;Lee, Jeong-Jick;Choi, Woo-Hyuk;Choi, Sung-Hwan;Shin, TaeMin;Yoon, Young-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2217-2224
    • /
    • 2014
  • This paper deals with system development which measures 12 channel ECG using medical analog front end(AFE) and discriminates arrythmia through signal analysis. Recently, occurrences of cardiac arrest have been increased. So the need of system that diagnoses an arrythmia which results in cardiac arrest is increasing. There are some drawbacks of conventional 12 channel ECG system that it occupies bulk and consists of complicated circuit. To improve those, we made up the system composed of medical AFE, algorithm for discriminating arrythmia and DSP for signal processing. This system can be monitored 12 channel ECG waveforms and the discriminant analysis result of arrhythmia through 7" LCD and received the input through touch pannel. In this study, we conducted normal operation test about output signal of ECG simulator(normal/abnormal ECG signal) to verify the implemented system and performance evaluation of the optimization process for applying arrhythmia algorithm to an embedded environment.

Development of Ultrasound Sector B-Scanner(I)-Front End Hardware Part- (초음파 섹터 B-스캐너의 개발(I)-프론트 엔드 부분-)

  • 권성재;박종철
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1986
  • A prototype ultrasound sector B-scanner has been developed where the front-end hardware refers to all the necessary circuits for transmitting the ultrasound pulses into the human body and receiving the reflected echo signals from it. The front-end hardware can generally be divided into three parts, i.e., a pulse generator for insonification, a receiver which is responsible for processing of low-level analog signals, and a steering controller for driving the mechanical sector probe whose functions and design concepts are described in this paper. The front-end hardware is implemented which incorporates the following features: improvement of the axial resolution using a circuit which reduces the ring-down time, flexibility of generating time-gain compensation curve, and adoption of a one-chip microcomputer for generating the rate pulses based on the sensor output waveforms.

  • PDF

Design and Implementation of the 16-QAM Modem for 26㎓ FBWA system

  • Kim, Nam-il;Kim, Eung-bae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1346-1349
    • /
    • 2002
  • This paper presents the design and implementation of 16-QAM modem that can be applied to fixed broadband wireless access systenm. It is implemented in the hardware prototype that consist of FPGA(Field Programmable Gate Array) for digital signal processing and analog front end module for analog signal processing. We provide 20.48Mbps data rate using implemented modem and test the modem in KOREA 26㎓ broadband wireless local loop system including IFU(Intermediate Frequency Unit) and RFU(Radio Frequency Unit) via air interface.

  • PDF

A Single-Stage 37 dB-Linear Digitally-Controlled Variable Gain Amplifier for Ultrasound Medical Imaging

  • Cho, Seong-Eun;Um, Ji-Yong;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.579-587
    • /
    • 2014
  • This paper presents a variable gain amplifier (VGA) for an analog front-end (AFE) of ultrasound medical imaging. This VGA has a closed-loop topology and shows a 37-dB-linear characteristic with a single-stage amplifier. It consists of an op-amp, a non-binary-weighted capacitor array, and a gain-control block. This non-binary-weighted capacitor array reduces the required number of capacitors and the complexity of the gain-control block. The VGA has been fabricated in a 0.35-mm CMOS process. This work gives the largest gain range of 37 dB per stage, the largest P1 dB of 9.5 dBm at the 3.3-V among the recent VGA circuits available in the literature. The voltage gain is controlled in the range of [-10, 27] dB in a linear-in-dB scale with 16 steps by a 4-bit digital code. The VGA has a bandpass characteristic with a passband of [20 kHz, 8 MHz].

Single-Phase Energy Metering Chip with Built-in Calibration Function

  • Lee, Youn-Sung;Seo, Jeongwook;Wee, Jungwook;Kang, Mingoo;Kim, Dong Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3103-3120
    • /
    • 2015
  • This paper presents a single-phase energy metering chip with built-in calibration function to measure electric power quantities. The entire chip consists of an analog front end, a filter block, a computation engine, a calibration engine, and an external interface block. The key design issues are how to reduce the implementation costs of the computation engine from repeatedly used arithmetic operations and how to simplify calibration procedure and reduce calibration time. The proposed energy metering chip simplifies the computation engine using time-division multiplexed arithmetic units. It also provides a simple and fast calibration scheme by using integrated digital calibration functionality. The chip is fabricated with 0.18-μm six-layer metal CMOS process and housed in a 32-pin quad-flat no-leads (QFN) package. It operates at a clock speed of 4096 kHz and consumes 9.84 mW in 3.3 V supply.

An Architecture Design of a Multi-Stage 12-bit High-Speed Pipelined A/D Converter (다단 12-비트 고속 파이프라인 A/D 변환기의 구조 설계)

  • 임신일;이승훈
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.220-228
    • /
    • 1995
  • An optimized 4-stage 12-bit pipelined CMOS analog-to-digital converter (ADC) architecture is proposed to obtain high linearity and high yield. The ADC based on a multiplying digital-to-analog converter (MDAC) selectively employs a binary-weighted-capacitor (BWC) array in the front-end stage and a unit-capacitor (UC) array in the back-end stages to improve integral nonlinearity (INL) and differential nonlinearity (DNL) simultaneously whil maintaining high yield. A digital-domain nonlinear error calibration technique is applied in the first stage of the ADC to improve its accuracy to 12-bit level. The largest DNL error in the mid-point code of the ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is reduced by avoiding a code-error symmetry observed in a conventional digitally calibrated ADC is simulated to prove the effectiveness of the proposed ADC architecture.

  • PDF

A Design of Pipelined Analog-to-Digital Converter with Multi SHA Structure (Multi SHA 구조의 파이프라인 아날로그-디지털 변환기 설계)

  • Lee, Seung-Woo;Ra, Yoo-Chan;Shin, Hong-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.114-121
    • /
    • 2005
  • In this paper, Pipelined A/D converter with multi SHA structure is proposed for high speed operation. The proposed structure incorporates a multi SHA block that consists of multiple SHAs of identical characteristics in parallel to improve the conversion speed. The designed multi SHA is operated by non-overlapping clocks and the sampling speed can be improved by increasing the number of multiplexed SHAs. Pipelined A/D converter, applying the proposed structure, is designed to satisfy requirement of analog front-end of VDSL modem. The measured INL and DNL of designed A/D converter are $0.52LSB{\sim}-0.50LSB\;and\;0.80LSB{\sim}-0.76LSB$, respectively. It satisfies the design specifications for VDSL modems. The simulated SNR is about 66dB which corresponds to a 10.7 bit resolution. The power consumption is 24.32mW.

A 4×32-Channel Neural Recording System for Deep Brain Stimulation Systems

  • Kim, Susie;Na, Seung-In;Yang, Youngtae;Kim, Hyunjong;Kim, Taehoon;Cho, Jun Soo;Kim, Jinhyung;Chang, Jin Woo;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.129-140
    • /
    • 2017
  • In this paper, a $4{\times}32$-channel neural recording system capable of acquiring neural signals is introduced. Four 32-channel neural recording ICs, complex programmable logic devices (CPLDs), a micro controller unit (MCU) with USB interface, and a PC are used. Each neural recording IC, implemented in $0.18{\mu}m$ CMOS technology, includes 32 channels of analog front-ends (AFEs), a 32-to-1 analog multiplexer, and an analog-to-digital converter (ADC). The mid-band gain of the AFE is adjustable in four steps, and have a tunable bandwidth. The AFE has a mid-band gain of 54.5 dB to 65.7 dB and a bandwidth of 35.3 Hz to 5.8 kHz. The high-pass cutoff frequency of the AFE varies from 18.6 Hz to 154.7 Hz. The input-referred noise (IRN) of the AFE is $10.2{\mu}V_{rms}$. A high-resolution, low-power ADC with a high conversion speed achieves a signal-to-noise and distortion ratio (SNDR) of 50.63 dB and a spurious-free dynamic range (SFDR) of 63.88 dB, at a sampling-rate of 2.5 MS/s. The effectiveness of our neural recording system is validated in in-vivo recording of the primary somatosensory cortex of a rat.

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.