• Title/Summary/Keyword: Anaerobic $H_2$ fermentation

Search Result 128, Processing Time 0.036 seconds

Influence of an Anaerobic Fungal Culture (Orpinomyces sp.) Administration on Growth Rate, Ruminal Fermentation and Nutrient Digestion in Calves

  • Dey, Avijit;Sehgal, Jatinder Paul;Puniya, Anil Kumar;Singh, Kishan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.820-824
    • /
    • 2004
  • The study was to see the effect of administration of ruminal fungi on feed intake, growth rate, rumen fermentation and nutrient digestion of calves (Tharparkar$\times$Holstein-Friesian, average age: 10 months, average body weight: 130 kg). The 6 calves in first group were fed a mixture consisted of 50% wheat straw and 50% concentrate (Maize 62%, Groundnut cake 35%, Mineral mix. 2% and Common salt 1%) along with 1 kg green oats $animal^{-1}$ $day^{-1}$ while second group calves were fed the above-mentioned diet in addition to a dose of 160 ml ($10^{6}$ CFU/ml) fungal culture $calf^{-1}$ $week^{-1}$. The average dry matter intake per day was slightly lowered in fungal fed calves yet feed conversion ratio was higher. The average daily weight gain was significantly higher (15.37%) in fungal administered group as compared to control. The nutrient digestibility was increased for crude fibre, NDF and ADF with fungal administration. Digestible energy value of straw-based diet in terms of percent TDN also increased. The pH and $NH_{3}$-N were lower whereas TVFA, total-N, TCA-N and number of zoospores were higher in rumen liquor in fungal administered group.

Physical and Chemical Characteristics of Cotton Waste Substrate According to Fermentation Conditions for Oyster Mushroom Bed Cultivation (느타리버섯 폐면배지의 발효조건별 이화학적 특성)

  • Ha, Tai-Moon;Yoon, Seon-Mee;Ju, Young-Cheuol;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.163-171
    • /
    • 2008
  • We have surveyed the variation of physical and chemical characteristics of aerobic and anaerobic outdoor fermentation of cotton wastes using for oyster mushroom cultivation. The inner temperature of cotton wastes fermented aerobically covered with thin cloth and setting pallet at bottom was higher than that of anaerobic fermented cotton wastes covered with P.E vinyl and the maximum temperature was $75^{\circ}C$ at 5th day after fermentation. pH of cotton wastes fermented aerobically was increased up to 8.9 after fermentation of $9{\sim}12$ days, but that of anaerobically fermented was decreased up to 5.0. Total carbon content was decreased but total nitrogen content was increased when fermentation was in progress. Oxygen concentration of cotton wastes fermented aerobically was decreased until 6 days after fermentation but increased after 9 days of fermentation. Ammonia concentration of cotton wastes fermented aerobically and anaerobically was below 10 ppm and $20{\sim}85\;ppm$ respectively. In anaerobic condition the cotton wastes was contaminated with mold ($15{\sim}50%$), where no contamination was found in aerobic condition during spawn running stage. Yields of mushroom grown on cotton wastes aerobically fermented for $6{\sim}9$ days was $23.0{\sim}23.6\;kg$ per $3.3\;m^2$ area.

A Study on Biogas Yield According to Food Waste Leachate Acid Fermentation Conditions (음폐수 산발효 조건에 따른 바이오가스 생산량에 관한 연구)

  • Moon, Kwangseok;Pak, Daewon;Kim, Jaehyung
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • This study performed acid fermentation pre-treatment to improve production efficiency of methane that is produced as a product in case of anaerobic fermentation by using food waste leachate, and attempted to confirm the acid fermentation optimum through the BMP test by using pre-treated food waste leachate to increase the yield of methane. As a result of the BMP experiment by using acid fermented food waste leachate, the highest yield of methane of 0.220 L/g VS was confirmed in the HRT three-day condition, and in the initial BMP test by pH, pH 6 was 19,920 mg/L that the highest VFA and acetic acid/TVFA(76.2%) were shown. At this time, it was confirmed that the yield of methane was mostly within 10 days that was reduced to around one-third compared to the general methane fermentation (within 30 days). As the yield of methane was 0.294 L/g VS, it showed a high efficiency of around 1.3 times compared to the control group.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Efficient Bio-gasification Facility of Pig Manure and Food Waste(III): Design and Operation Guideline (가축분뇨 병합처리 바이오가스화를 위한 설계 및 운전 기술지침 마련 연구(III) 설계 및 운전 지침(안) 중심으로)

  • Lee, Dongjin;Moon, HeeSung;Son, Jihwan;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.99-111
    • /
    • 2017
  • The purpose of this study is to provide a design and operation technical guideline for meeting the appropriate design criteria to bio-gasification facilities treating organic wastes. Based on the results obtained during the field surveys, the overall design and operation guidelines for bio-gasification facilities, monitoring items, cycle and commissioning period were presented. According to the flow of anaerobic digestion process, Various design factors for bio-gasification facilities were proposed in this study. When designing the initial anaerobic digestion capacity, 10 ~ 30% of the treatment capacity was applied considering the discharge characteristics by the incoming organic wastes. At the import storage hopper process, limit concentration of transporting organic wastes was limited to TS 10 % or less, and limit concentration of inhibiting factor was suggested in operation of anaerobic digester. In addition, organic loading rate (OLR) was shown as $1.5{\sim}4.0kgVS_{in}/(m^3{\cdot}day)$ for the combined bio-gasification facilities of animal manure and food wastes. Desulfurization and dehumidification methods of biogas from anaerobic digestor and proper periods of liquifization tank were suggested in design guideline. It is recommended that the operating parameters of the biogasification facilities to be maintained at pH (acid fermentation tank 4.5~6.5, methane fermentation tank 6.0~8.0), temperature variation range within $2^{\circ}C$, management of volatile fatty acid and ammonia concentration less than 3,000 mg/L, respectively.

Effects of Rumen pH on Degradation Kinetics and Fermentation Indices of Corn Silage Ensiled with Antifungal and Carboxylesterase Producing Inoculants

  • Chang, Hong Hee;Paradhipta, Dimas Hand Vidya;Lee, Seong Shin;Lee, Hyuk Jun;Joo, Young Ho;Min, Hyeong Gyu;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.131-137
    • /
    • 2020
  • The present study investigated effects of antifungal and carboxylesterase inoculant on rumen fermentation with different rumen pH. Corn silage was treated without inoculant (CON) and with a mixed Lactobacillus brevis 5M2 and L. buchneri 6M1 (MIX). Rumen fluid was collected from two cannulated Hanwoo heifers before morning feeding (high rumen pH at 6.70) and 3 h after feeding (low rumen pH at 6.20). Dried corn silage was incubated in the rumen buffer (rumen fluid + anaerobic culture medium at 1:2 ratio) for 48 h at 39℃. Eight replications for each treatment were used along with two blanks. Both in a high and a low rumen pH, MIX silages presented higher (p<0.05) the immediately degradable fraction, the potentially degradable fraction, total degradable fraction, and total volatile fatty acid (VFA) than those of CON silages. Incubated corn silages in a low rumen pH presented lower (p<0.05) total degradable fraction, ammonia-N, total VFA (p=0.061), and other VFA profiles except acetate and propionate, than those in a high rumen pH. The present study concluded that application of antifungal and carboxylesterase inoculant on corn silage could improve degradation kinetics and fermentation indices in the rumen with high and low pH conditions.

폐지 슬러지를 이용한 혐기성 메탄발효 특성 분석

  • Jo, Geon-Hyeong;Kim, Jung-Gon;Jeong, Hyo-Gi;Kim, Seong-Jun;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.367-370
    • /
    • 2003
  • This study was carried out to investigate the possibility for reuse of solid organic wastes such as saccharified newspapers and boxes by two-phase anaerobic fermentation system. When 15g of newspaper and box wastes were digested for 24 days by batch fermentation, tCOD removal rate were found to be 60.9 and 62.4%, respectively. During this period, the amounts of biogas produced were 6.95 and 6.43L. The removal efficiencies of total solid were 34.8 and 33.4%, and those of volatile solid were 40.0 and 39.2%, respectively. That pH was around 7.5 after 20-days operation means methane fermentation is well advanced. In case of semicontinuous reaction, tCOD removal efficiencies of newspaper and box wastes were 64.7 and 65.0%, respectively for 14-days operation. It has been shown that each of the average biogas amounts produced after 25 days operation (stabilization stage for methane fermentation) was 0.31 and 0.30L/g dry wt./day, respectively, and each methane contents was 57.3 and 56.2%, respectively. After the reaction continued for 25 days, pHs in the anaerobic acidogenic and methanogenic fermenters were shown to be 5.0 and 7.5, respectively.

  • PDF

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

  • Zhang, Hui Ling;Chen, Yong;Xu, Xiao Li;Yang, Yu Xia
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2013
  • This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen ($NH_3$-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields ($p{\leq}0.001$). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L.

Dihydrodaidzein production from soybean hypocotyl extract by human intestinal bacterium MRG-1

  • Sirirat Prasertwasu;Jaehong Han
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.447-451
    • /
    • 2022
  • Phytoestrogenic S-equol production in human gut exclusively depends on the biotransformation of daidzein to dihydrodaidzein (DHD). With a growing demand for the DHD enriched biomaterials, the commercial soybean hypocotyl extract (SHE) was chosen as a substrate for the microbial DHD production by human gut bacterium MRG-1, anaerobic DHD producer. To optimize the production of DHD, anaerobic fermentation conditions, including sterilization time, growth stage of inoculum, and growth media, were investigated. Maximum DHD production (1.2 g/L) was achieved after 48 h incubation when 1% (w/v) of SHE in the 20-min-sterilized Gifu Anaeboic Medium media was inoculated with OD600 0.3-0.4 of MRG-1. This is the first report that crude soy biomaterial, instead of pure compounds, such as daidzin and daidzein, is utilized for the production of the DHD enriched biomaterial.

Effects of Supplementation of Synbiotic Co-cultures Manufactured with Anaerobic Microbes on In Vitro Fermentation Characteristics and In Situ Degradability of Fermented TMR (혐기성 미생물로 제조한 synbiotics 혼합배양물의 첨가가 발효 TMR의 발효특성과 소실률에 미치는 영향)

  • Lee, Shin-Ja;Shin, Nyeon-Hak;Hyun, Jong-Hwan;Kang, Tae-Won;An, Jung-Jun;Jung, Ho-Sik;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1538-1546
    • /
    • 2009
  • This study was conducted to estimate the in vitro fermentation characteristics and in situ degradabilities of total mixed rations fermented by the synbiotic co-cultures composed of various anaerobic microorganisms in the rumen of cow. Seventy two TMR bags (4 treatments $\times$ 6 fermentation days $\times$ 3 replications) were manufactured for in vitro and in situ experiments. The experiment was composed of four treatments including the control, the mould and bacteria synbiotics (T1), the mould and yeast synbiotics (T2) and the bacteria and yeast synbiotics (T3). Each treatment had six fermentation days (1, 3, 5, 7, 14, 21 day) with three replications. Two rumen cannulated Holstein cows (550 ㎏ of mean body wt) were used for in situ trial, and a total of 96 nylon bags were retrieved from the rumen according to eight fermentation times (1, 3, 6, 9, 18, 24, 48 and 72 hr). The mean fermentation temperatures of TMRs by supplementation of anaerobic micoorganism co-cultures ranged from $22.97^{\circ}C$ to $26.07^{\circ}C$, and tended to increase steadily during the entire period. pH values of the F-TMRs ranged from 4.39 to 4.98 and tended to decrease with the extension of the fermentation period, and decreased by supplementation of synbiotics (p<0.05). The ammonia concentrations of F-TMRs were not affected by addition of synbiotic co-cultures during the early fermentation period (within 7 days), but was lowest (p<0.05) in T3 during the late fermentation periods (after 14 days). Lactic acid concentration of F-TMR was lowest in T3 at 1 day of fermentation, but was not different from treatments in the other fermentation days. Microbial growth rates of F-TMR reached a peak at 7 days of fermentation, and afterward tended to decrease. In in situ experiment, the DM disappearance rates were higher in T1 than the control during early fermentation times (within 3 hours), but was vice versa at 48 hours of fermentation (p<0.05). There was no significant difference in effective DM degradability among treatments. NDF and ADF disappearance rates in situ were similar to those of DM. From the above results, the supplementation of synbiotics, particularly the mould and bacteria synbiotics, resulted in improving the pH and concentration of lactic acid of F-TMR as parameters of fermentation compare to the control, and also had higher in situ disappearance rates of DM, NDF and ADF than the control at early fermentation time. However, effective DM degradability was not affected by supplementation of synbiotics.