Browse > Article
http://dx.doi.org/10.12989/eri.2014.2.1.001

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii  

Kose, Ayse (Ege University Department of Bioengineering)
Oncel, Suphi S. (Ege University Department of Bioengineering)
Publication Information
Advances in Energy Research / v.2, no.1, 2014 , pp. 1-9 More about this Journal
Abstract
The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.
Keywords
microalgae; biohydrogen; chlamydomonas reinhardtii;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Antal, T.K., Krendeleva, T.E., Laurinavichene, T.V., Makarova, V.V. Ghirardi, M.L., Rubin, A.B., Tsygankov, A.A. and Seibert, M. (2003), "The dependence of algal $H_2$ production on photosystem II and $O_2$ consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells", Biochim. Biophys. Acta., 1607(2-3), 153-160.   DOI
2 Das, D. and Veziroglu, N. (2008), "Advances in biological hydrogen production in processes", Int. J. Hydrogen Energ., 33(21), 604-657.
3 Edelman, M. and Mattoo, A.K. (2008), "D1-protein dynamics in photosystem II: the lingering enigma", Photosynth. Res., 98(1-3), 609-620.   DOI
4 Edelman, M., Mattoo, A.K. and Marder, J.B. (1984), Three Hats of the Rapidly Metabolized 32 kD Protein Thylakoids, (Ellis, R.T. Ed.), Chloroplast Biogenesis, Cambridge University Press, Cambridge, UK, pp. 283-302.
5 Faraloni, C. and Torzillo, G. (2010), "Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii $Q_B$ binding D1 protein mutants under sulphur starvation: changes in chlorophyll fluorescence and pigment composition", J. Phycol., 46(4), 788-799.   DOI
6 Forestier, M., King, P., Zhang, L., Posewitz, M., Schwarzer, S., Happe, T., Ghirardi, M.L. and Seibert, M. (2003), "Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions", Eur. J. Biochem, 270(13), 2750-2758.   DOI
7 Gaffron, H. and Rubin, J. (1942), "Fermentative and photochemical production of hydrogen in algae", J. Gen. Physiol., 26(2), 219-240.   DOI
8 Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E. and Melis, A. (2000), "Microalgae: A green source of renewable $H_2$", Trends Biotechnol., 18(12), 506-511.   DOI   ScienceOn
9 Giannelli, L. and Torzillo, G. (2012), "Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension", Int. J. Hydrogen Energ., 37(22), 16951-16961.   DOI
10 Giardi, M.T., Rea, G., Lambreva, M.D., Antonacci, A., Pastorelli, S., Bertalan, I., Johanningmeier, U. and Mattoo A.K. (2013), "Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme enviromnent in space", PLoS One, 8(5), e64352.   DOI
11 Hallenbeck, P.C. and Benemann, J.R. (2002), "Biological hydrogen production; fundamentals and limiting processes", Int. J. Hydrogen Energ., 27(11-12), 1185-1193.   DOI   ScienceOn
12 Happe, T., Hemschemeier, A., Winkler, M. and Kaminski, A. (2002), "Hydrogenases in green algae: Do they save the algae's life and solve our energy problems?", Trends. Plant Sci., 7(6), 246-250.   DOI   ScienceOn
13 Hoshino, T., Daniel, J.J. and Joel, L. (2012), "Design of new strategy for green algal photo-hydrogen production: Spectral-selective photosystern I activation and photosystem II deactivation", Bioresour. Technol., 120, 233-240.   DOI
14 Kettunen, R., Tyystjarvi, E. and Aro, E.M. (1996), "Degradation pattern of photosystem II reaction center protein D1 in intact leaves", Plant Physiol., 111(4), 1183-1190.   DOI
15 Laurinavichene, T., Iolstygina, I. and Isygankov, A. (2004), "The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii", J. Biotechnol., 114 (1-2),143-151.   DOI
16 Kima, J.P., Kang, C.D., Park, T.Y., Kim, M.S. and Sim, S.J. (2006), "Enhanced hydrogen production by controlling light intensity in sulphur deprived Chlamydomonas reinhardtii culture", Int. J. Hydrogen Energ., 31(11), 1585-1590.   DOI
17 Kosourov, S., Makarova, V., Fedorov, A.S., Tsygankov, A., Seibert, M. and Ghirardi, M.L. (2005), "The effect of sulfur re-addition on $H_2$ photoproduction by sulfur-deprived green algae", Photosynth. Res., 85(3), 295-305.   DOI
18 Kosourov, S., Patrusheva, E., Ghirardi, M.L., Seibert, M. and Tsygankov, A. (2002), "A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtiiunder different growth condition", J. Biotechnol., 128(4), 776-787.
19 Laurinavichene, T.V., Fedorov, A.S., Ghirardi, M.L., Seibert, M. and Tsygankov, A.A. (2006), "Demonstration of sustained hydrogen photoproduction by immobilized, sulfurdeprived Chlamydomonas reinhardtii cellse", Int. J. Hydrogen Energ., 31(5), 659-667.   DOI
20 Levin, D.E., Pitt, L. and Love, M. (2004), "Biohydrogen production: Prospects and limitations to practical application", Int. J. Hydrogen Energ., 29(2), 173-185.   DOI   ScienceOn
21 Mata T.M., Martins A.A. and Caetano N.S. (2010), "Microalgae for biodiesel production and other applications: A review", Renew. Sust. Energ. Rev., 14(1), 217-32.   DOI   ScienceOn
22 Melis, A. (2002), "Green alga hydrogen production: progress, challenges and Prospects", Int. J. Hydrogen Energ., 27, 1217-1228.   DOI   ScienceOn
23 Oncel, S. and Kose, A. (2014), "Comprasion of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity", Bioresource Technol., 151, 265-270.   DOI
24 Melis, A. and Happe, T. (2001) "Hydrogen production: Green algae as a source of energy", Plant Physiol., 127(3), 740-748.   DOI   ScienceOn
25 Melis, L., Zhang, M., Forestier, M.L. and Ghirardi, M.S. (2000), "Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii", Plant Physiol., 122(1), 127-136.   DOI   ScienceOn
26 Oncel, S.S. (2013) "Microalgae for a macroenergy world", Renew. Sust. Energ. Rev., 26, 241-264.   DOI
27 Oncel, S. and Sabankay, M. (2012), "Microalgal biohydrogen production considering light energy and mixing time as the key features for scale up", Bioresource Technol., 121, 228-234.   DOI
28 Oncel, S. and Sukan, F.V. (2011), "Effect of light intensity and the light: dark cycles on the long term hydrogen production of Chlamydomonas reinhardtiiby batch cultures", Biomass. Bioenerg, 35(3), 1066-1074.   DOI
29 Oncel, S. and Vardar-Sukan, F. (2009), "Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime", Int. J. hydrogen energ., 34(18), 7592-7602.   DOI
30 Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E. and Madamwar, D. (2011), "Cyanobacteria and microalgae: A positive prospect for biofuel", Bioresource Technol., 102(22), 10163-10172.   DOI   ScienceOn
31 Torzillo, G., Scoma, A., Faraloni, C., Ena, A. and Johanningmeier, U. (2009), "Increased hydrogen photoproduction by means of a sulfur deprived Chlamydomonas reinhardtii D1 protein mutant", Int. J. Hydrogen Energ, 34(10), 4529-4536.   DOI
32 Scoma, A., Giannelli, L., Faraloni, C. and Torzillo, G. (2012), "Outdoor $H_2$ production in 50-L tubular photobioreactor by means of a sulfur-deprived cultur of the microalgae Chlamydomonas reinhardtii", J. Biotechnol., 157(4), 620-627.   DOI
33 Scoma, A., Krawietz, D., Faraloni, C., Gianelli, L., Happe, T. and Torzillo, G. (2012), "Sustained $H_2$ production in a Chlamydomonas reinhardtii D1 protein mutant", J. Biotechnol., 157(4), 613-619.   DOI
34 Specht, E., Miyake-Stoner, S. and Mayfield, S. (2010), "Micro-algae come of age as a platform for recombinant protein production", Biotechnol. Lett., 32(10), 1373-1383.   DOI
35 Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L. and Seibert, M. (2006), "Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions", Int. J. Hydrogen Energ., 31(11), 1574-1584.   DOI
36 Zhang, L., Happe, T. and Melis, A. (2002), "Biochemical and morphological character-ization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga)", Planta., 214(4), 552-561.   DOI   ScienceOn