• Title/Summary/Keyword: Amorphous Silicon (a-Si)

Search Result 488, Processing Time 0.027 seconds

Characterization of Poly-Si TFT's using Amorphous-$Si_xGe_y$ for Seed Layer (Amorphous-$Si_xGe_y$을 seed layer로 이용한 Poly-Si TFT의 특성)

  • Jung, Myung-Ho;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.125-126
    • /
    • 2007
  • Polycrystalline silicon thin-film-transistors (Poly-Si TFT's) with a amorphous-$Si_xGe_y$ seed layer have been fabricated to improve the performance of TFT. The dependence of crystal structure and electrical characteristics on the the Ge fractions in $Si_xGe_y$ seed layer were investigated. As a result, the increase of grain size and enhancement of electrical characteristics were obtained from the poly-Si TFT's with amorphous-SixGey seed layer.

  • PDF

Laser Induced Crystallizatioo of Amorphous Si Films on Glass Substrates (유리 기판을 이용한 비정질 실라콘 박막의 결정화)

  • Kim, P.K.;Moon, S.J.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.6-10
    • /
    • 2010
  • Crystallization of 100 nm thick amorphous silicon (a-Si) films on glass substrates was carried out by using a double laser irradiation method. Depending on a-Si deposition method or glass types, the quality of crystallized silicon film varies significantly. For a-Si films deposited with high concentration of impurities, large grains or high crystallinity can not be achieved. Crystallization with different a-Si deposition methods confirmed that for the polycrystallization of a-Si films on glass substrates, controlling the impurity density during substrate preparation is critical.

  • PDF

Metal induced crystallization of amorphous silicon using metal solution

  • Yoon, Soo-Young;Oh, Jae-Young;Kim, Chae-Ok;Jang, Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.123-133
    • /
    • 1998
  • Amorphous silicon (a-Si) was crystallized by metal induced crystallization using metal solution. The a-Si films spin coated with a 50,000 ppm Ni solution were crystallized at as low as $500^{\circ}C$. Needlelike morphology, developed as a result of the migration of $NiSi_2$, precipitates, appears in the MIC poly-Si. The growth of the needlelike crystallites proceeds to a direction parallel to (111). The crystallization temperature can be lowered to $450^{\circ}C$ by Au addition. The enhancement of crystallization results from the decrease of interfacial energy at the NiSi2/Si interface by Au addition.

  • PDF

Performance characteristics of building-integrated transparent amorphous silicon PV system for a daylighting application (자연채광용 박막 투광형 BIPV 창호의 발전특성 분석 연구)

  • Yoon, Jong-Ho;Kim, Seok-Ge;Song, Jong-Wha;Lee, Sung-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.280-283
    • /
    • 2007
  • The first grid-connected, building-integrated transparent amorphous silicon photovoltaic installation has been operated since October 2004 in Yongin, Korea. The 2.2kWp transparent PV system was applied to the facade of entrance hall in newly constructed KOLON E&C R&D building. The PV module is a nominal 0.98m ${\times}$ 0.95m, 10% transparent, laminated, amorphous(a-Si) thin-film device rated at 44 Wp per module. To demonstrate the architectural features of thin film PV technologies for daylighting application, transparent PV modules are attached to the building envelope with the form of single glazed window and special point glazing(SPG) frames. Besides power generation, the 10% transmittance of a-Si PV module provides very smooth natural daylight to the entrance hall without any special shading devices for whole year. The installation is fully instrumented and is continuously monitored in order to allow the performance assessment of amorphous silicon PV operating at the prevailing conditions. This paper presents measured power performance data from the first 12 months of operation. For the first year, annual average system specific yield was just 486.4kWh/kWp/year which is almost half of typical amorphous silicon PV output under the best angle and orientation. It should be caused by building orientation and self-shading of adjacent mass. Besides annual power output, various statistical analysis was performed to identify the characteristics of transparent thin film PV system.

  • PDF

Crystallization behavior of Amorphous Silicon with Al and Ni (Al과 Ni를 이용한 비정질 실리콘의 결정화 거동)

  • Kwon, Soon-Gyu;Choi, Kyoon;Kim, Byung-Ik;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.230-234
    • /
    • 2006
  • Metal-Induced Crystallization (MIC) of amorphous silicon (a-Si) using aluminum and nickel as catalysts were performed with a variation of metal thickness and temperature. Raman results showed that the crystallization of a-Si depended on the thickness of aluminum while not on nickel. Nickel that forms silicide nodules during annealing simply catalyzed the formation of crystalline silicon (c-Si) while aluminum was consumed and transferred during MIC, which resulted in more complex microstructural characteristics. Crystalline silicons after NIC had elongated shape with a twin along the long axis. Morphological change after Aluminum-Induced Crystallization (AIC) showed more equiaxial grains. The nucleation and growth mechanism of AIC was discussed.

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

Effects of Sintering Additives on the Microstructure Development in Silicon Oxynitride Ceramics

  • Kim, Joosun;Chen, I-Wei
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.224-228
    • /
    • 2000
  • Using a small amount of additives and amorphous Si₂N₂O powders, O-SiAlON ceramics have been hot-pressed and its microstructure and mechanical properties were investigated. Scandium oxide was demonstrated to be an effective densification additive for O-SiAlON. Amorphous Si₂N₂O was densified at relatively low temperatures and a microstructure with acicular grains was developed. Fine grains found in materials obtained from amorphous powders suggest that nucleation and crystallization of O-SiAlOH is relatively easy compared with the Si₃N₄-SiO₂reaction.

  • PDF

Thin Film Transistor (TFT) Pixel Design for AMOLED

  • Han, Min-Koo;Lee, Jae-Hoon;Nam, Woo-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.413-418
    • /
    • 2006
  • Highly stable thin-film transistor (TFT) pixel employing both low temperature polycrystalline silicon (LTPS) and amorphous silicon (a-Si) for active matrix organic light emitting diode (AMOLED) is discussed. ELA (excimer laser annealing) LTPS-TFT pixel should compensate $I_{OLED}$ variation caused by the non-uniformity of LTPS-TFT due to the fluctuation of excimer laser energy and amorphous silicon TFT pixel is desired to suppress the decrease of $I_{OLED}$ induced by the degradation of a-Si TFT. We discuss various compensation schemes of both LTPS and a-Si TFT employing the voltage and the current programming.

  • PDF

Joule-heating induced crystallization (JIC) of amorphous silicon films

  • Hong, Won-Eui;Lee, Joo-Yeol;Kim, Bo-Kyung;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.459-462
    • /
    • 2007
  • An electric field was applied to a conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced through a solid state transformation within the range of a millisecond. Uniformly distributed grains were obtained due to enormously high heating rate.

  • PDF

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.