• Title/Summary/Keyword: Alumina Powder

Search Result 413, Processing Time 0.035 seconds

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process (알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향)

  • Chae, E.J.;Uhm, Y.R.;Han, B.S.;Rhee, C.K.;Park, S.E.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.127-131
    • /
    • 2007
  • The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites (알루미나 나노섬유와 분말이 첨가된 에폭시 복합재료의 열전도도 특성 및 파괴인성에 대한 연구)

  • Choi, Jeong-Ran;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this work, the effect of alumina nanofibers on thermal conductivity and fracture toughness of alumina nanofibers and powder filled epoxy (EP) composites were investigated with varying alumina nanofiber content from 20 to 100 phr. Thermal conductivity was tested using a laser flash analysis (LFA). The fracture toughness of the composites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The mophologies were observed by scanning electron microscopy (SEM). From the results, it was found that the thermal conductivity was enhanced with increasing alumina nanofiber content, which played a key factor to determine the thermal conductivity. The $K_{IC}$ value was increased with increasing alumina nanofiber content, whereas the value decreased above 40 phr alumina nanofiber content. This was probably considered that the alumina nanofiber entangled each other in EP due to an excess of alumina nanofibers.

The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

  • Su, Naichuan;Yue, Li;Liao, Yunmao;Liu, Wenjia;Zhang, Hai;Li, Xin;Wang, Hang;Shen, Jiefei
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.214-223
    • /
    • 2015
  • PURPOSE. To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS. Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and $110{\mu}m$. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (${\alpha}$=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS. The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from $50{\mu}m$ to $110{\mu}m$. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION. Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of $110{\mu}m$ is recommended for dental applications to improve the bonding between zirconia core and ICR.

The Study on the Production of Reaction Bonded Aluminum Oxide by Using Microwave Energy (마이크로파 에너지를 이용한 저수축 반응소결 알루미나의 제조에 관한 연구)

  • 박정현;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.227-233
    • /
    • 1995
  • By using homestyle microwave oven, Al-Al2O3 powder mixture could be oxidized and sintered into Al2O3 body. The differences in powder characteristics among the differently processed raw materials affect the oxidation and sintering behaviours, and these effects were more pronounced in case of microwave oven than of conventional furnace. Al-Al2O3 powder mixture was oxidized and sintered within 2hrs, which could save both processing time and energy.

  • PDF

Analysis for Creep Densification and Grain Growth of Ceramic Powder Compacts (세라믹 분말 성형체의 크리프 치밀화 및 결정립 성장의 해석)

  • 권영삼;김기태
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.251-258
    • /
    • 1993
  • A constitutive model is proposed to analyze creep densification and grain growth of ceramic powder compacts. The creep strain rates for powder compacts are obtained from constitutive equations proposed by Rahaman et al. and Helle et al. The grain-growth rate is obtained by assuming time, grain size, and strain rate as its internal state variables. the proposed constitutive model is compared with experimental data for alumina compacts obtained by Venkatachari and Raj for sinter forging and by Son et al. for hot pressing.

  • PDF

Study of Hydrolysis of Al Powder and Compaction of Nano Alumina by Spark Plasma Sintering(SPS) (Al 분말의 수화 반응과 스파크 플라즈마 열처리법으로 제조된 알루미나 성형체 연구)

  • Uhm Y. R.;Lee M. K.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.422-427
    • /
    • 2005
  • The $Al_2O_3$ with various phases were prepared by simple ex-situ hydrolysis and spark plasma sintering (SPS) process of Al powder. The nano bayerite $(\beta-Al(OH)_3)$ phase was derived by hydrolysis of commercial powder of Al with micrometer size, whereas the bohemite (AlO(OH)) phase was obtained by hydrolysis of nano Al powder synthesized by pulsed wire evaporation (PWE) method. Compaction as well as dehydration of both nano bayerite and bohemite was carried out simultaneously by SPS method, which is used to fabricate dense powder compacts with a rapid heating rate of $100^{\circ}C$ per min. under the pressure of 50MPa. After compaction treatment in the temperature ranges from $100^{\circ}C\;to\; 1100^{\circ}C$, the bayerite and bohemite phases change into various alumina phases depending on the compaction temperatures. The bayerite shows phase transition of $Al(OH)_3{\to}{\eta}-Al_2O_3{\to}{\theta}-Al_2O_3{\to}\alpha-Al_2O_3$ sequences. On the other hand, the bohemite experiences the phase transition from AlO(OH) to ${\gamma}-Al_2O_3\;at\;350^{\circ}C.$ It shows AlO(OH) ${\gamma}-Al_2O_3{\to}{\delta}-Al_2O_3{\to}{\alpha}-Al_2O_3$ sequences. The ${\gamma}-Al_2O_3$ compacted at $550^{\circ}C$ shows a high surface area $(138m^2/g)$.

Fractal Structures of Molybdena Thin Films Deposited on Alumina Ceramics

  • Zhang, Jizhgong;Diaoa, Zhu;Tiana, Haoyang
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.36-39
    • /
    • 2002
  • Molybdena powder was heated at both 660$^{\circ}C$ and 700$^{\circ}C$ for half-hour in an evaporation-deposition device. The molybdena thin films deposited on the surfaces of alumina ceramics displayed two kinds of fractal aggregates, i.e., the stackings of ribbon-like crystals and ramified palm-like structures. It is revealed from the experimental results that the microstructures of these fractal aggregates depended strongly on their growth conditions. The dynamics of fractal growth of molybdena thin film is discussed.

  • PDF

A Study on Preparation of Alumina Membranes(1) (알루미나 한외여과막의 제조에 관한 연구(1))

  • 유재근;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.589-597
    • /
    • 1993
  • The optimum sol solution for making alumina membrane was synthesized by using sol-gel method with aluminium isopropoxide. Two types of supports were made from the $\alpha$-Al2O3 powder. The porosities of supports could be controlled by the forming methods and the heat treatment conditions. After the support was coated with optimum sol solution and heat-treated at 50$0^{\circ}C$ for 1hour, the thickness of crack-free membrane could be controlled reproductively with dipping time.

  • PDF