DOI QR코드

DOI QR Code

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process

알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향

  • Chae, E.J. (Department of Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute (KAERI)) ;
  • Uhm, Y.R. (Department of Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute (KAERI)) ;
  • Han, B.S. (Department of Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, C.K. (Department of Nuclear Nanomaterials Development Lab., Korea Atomic Energy Research Institute (KAERI)) ;
  • Park, S.E. (Department of Physical Chemistry In-ha University)
  • 채은진 (한국원자력 연구소, 원자력나노소재응용랩) ;
  • 엄영랑 (한국원자력 연구소, 원자력나노소재응용랩) ;
  • 한병선 (한국원자력 연구소, 원자력나노소재응용랩) ;
  • 이창규 (한국원자력 연구소, 원자력나노소재응용랩) ;
  • 박상언 (인하대학교, 물리화학부)
  • Published : 2007.04.28

Abstract

The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

Keywords

References

  1. S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki : J. Phys., 43 (1982) 255 https://doi.org/10.1051/jphys:01982004302025500
  2. H. C. Lin and S. K. Wu : Acta. Metall. Mater., 42 (1944) 1623 https://doi.org/10.1016/0956-7151(94)90371-9
  3. E.-S. Mohammed, E.-S. Martha and F. B. Helge : Biomaterials., 22 (2001) 2153 https://doi.org/10.1016/S0142-9612(00)00406-3
  4. D. G. Morris and M. A. Morris : Mater. Sci. Eng. A., 110 (1989) 139 https://doi.org/10.1016/0921-5093(89)90165-2
  5. M. Igharo and V. Wood : Powder Metall., 28 (1985) 131 https://doi.org/10.1179/pom.1985.28.3.131
  6. S. M. Green, D. M. Grant and R. Kelly : Powder Metall., 40 (1977) 43
  7. K. E. Gonsalves, S. P. Rangarajan and J. Wang : Handbook of Nanostructured Materials and Nanotechnology (Edited by H. S. Nalwa), Academic Press, Vol. 1, 1-21 (2000)
  8. R. W. Siegel : MRS Bull., 15 (1990) 60
  9. Y. R. Uhm, W. W. Kim, and C. K. Rhee : Phys. Stat. Sol. A, 201(2004) 1934 https://doi.org/10.1002/pssa.200304560
  10. A. Ye. Yermakov, T. A. Feduschak, M. A. Uimin, A. A. Mysik, V. S. Gaviko, O. N. Chupakin, A. B. Shishmakov, V. G. Kharchuk, L. A. Petrov, Y. A. kotov, A. V. Vosmerikov and A. V. Korolyov : Solid Stat. Ionics, 172 (2004) 317 https://doi.org/10.1016/j.ssi.2004.05.014
  11. Y. R. Uhm, J. S. Oh, W. W. Kim and C. K. Rhee: J. Korean Powder Metall. Inst., 12(1), (2005) 64 https://doi.org/10.4150/KPMI.2005.12.1.064
  12. J. Barluenga, M. Tomas, A. Ballesteros, L. A. Lopez, Tetrahedron Lett., 50 (1989) 4573-4576 https://doi.org/10.1016/S0040-4039(01)80748-6
  13. B. Love, M. M. Goodman: J. Med. Chem., 17(1974), 956-965 https://doi.org/10.1021/jm00255a010
  14. Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang and Y. Qian : Sol. Stat. Comm., 130 (2004), 585 https://doi.org/10.1016/j.ssc.2004.03.028
  15. M. C. Wang, C. L. Xu, Y. X. Zou, H. M. Liu and D. K. Wang: Tetrahedron Letters., 46 (2005) 5413-5416 https://doi.org/10.1016/j.tetlet.2005.05.143