• Title/Summary/Keyword: Alpha function

Search Result 1,703, Processing Time 0.027 seconds

Protein Kinase A Increases DNA-Binding Activity of Testis-Brain RNA-Binding Protein

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2008
  • Testis brain RNA-binding protein (TB-RBP) is a DNA/RNA binding protein. TB-RBP is mainly expressed in testis and brain and highly conserved protein with several functions, including chromosomal translocations, DNA repair, mitotic cell division, and mRNA transport, stabilization, and storage. In our previous study, we identified TB-RBP as an interacting partner for the catalytic subunit $(C{\alpha})$ of protein kinase A(PKA) and verified their interaction with several biochemical analyses. Here, we confirmed interaction between $C{\alpha}$. and TB-RBP in mammalian cells and determined the effect of $C{\alpha}$. on the function of TB-RBP. The activation of $C{\alpha}$. increased the TB-RBP function as a DNA-binding protein. These results suggest that the function of TB-RBP can be modulated by PKA and provide insights into the diverse role of PKA.

  • PDF

Analysis on the special quantitative variation of dot model by the position transform

  • Kim, Jeong-lae;Kim, Kyung-seop
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.67-72
    • /
    • 2017
  • Transform variation technique is constituted the vibration status of the flash-gap recognition level (FGRL) on the distribution recognition function. The recognition level condition by the distribution recognition function system is associated with the scattering vibration system. As to search a position of the dot model, we are consisted of the distribution value with character point by the output signal. The concept of recognition level is composed the reference of flash-gap level for variation signal by the distribution vibration function. For displaying a variation of the FGRL of the maximum-average in terms of the vibration function, and distribution position vibration that was the a distribution value of the far variation of the $Dis-rf-FA-{\alpha}_{MAX-AVG}$ with $5.74{\pm}1.12$ units, that was the a distribution value of the convenient variation of the $Dis-rf-CO-{\alpha}_{MAX-AVG}$ with $1.64{\pm}0.16$ units, that was the a distribution value of the flank variation of the $Dis-rf-FL-{\alpha}_{MAX-AVG}$ with $0.74{\pm}0.24$ units, that was the a distribution value of the vicinage variation of the $Dis-rf-VI-{\alpha}_{MAX-AVG}$ with $0.12{\pm}0.01$ units. The scattering vibration will be to evaluate at the ability of the vibration function with character point by the distribution recognition level on the FGRL that is showed the flash-gap function by the recognition level system. Scattering recognition system will be possible to control of a function by the special signal and to use a distribution data of scattering vibration level.

ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION

  • Kim, Jung-Ok;Kwon, Ern-Gun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.623-632
    • /
    • 2010
  • A holomorphic function F defined on the unit disc belongs to $A^{p,{\alpha}}$ (0 < p < $\infty$, 1 < ${\alpha}$ < $\infty$) if $\int\limits_U|F(z)|^p \frac{1}{1-|z|}(1+log)\frac{1}{1-|z|})^{-\alpha}$ dxdy < $\infty$. For boundedness of the composition operator defined by $C_{fg}=g{\circ}f$ mapping Blochs into $A^{p,{\alpha}$ the following (1) is a sufficient condition while (2) is a necessary condition. (1) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha}M_p(r,\lambda{\circ}f)^p\;dr$ < $\infty$ (2) $\int\limits_o^1\frac{1}{1-r}(1+log\frac{1}{1-r})^{-\alpha+p}(1-r)^pM_p(r,f^#)^p\;dr$ < $\infty$.

OVERRINGS OF THE KRONECKER FUNCTION RING Kr(D, *) OF A PRUFER *-MULTIPLICATION DOMAIN D

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1013-1018
    • /
    • 2009
  • Let * be an e.a.b. star operation on an integrally closed domain D, and let $K\gamma$(D, *) be the Kronecker function ring of D. We show that if D is a P*MD, then the mapping $D_{\alpha}{\mapsto}K{\gamma}(D_{\alpha},\;{\upsilon})$ is a bijection from the set {$D_{\alpha}$} of *-linked overrings of D into the set of overrings of $K{\gamma}(D,\;{\upsilon})$. This is a generalization of [5, Proposition 32.19] that if D is a Pr$\ddot{u}$fer domain, then the mapping $D_{\alpha}{\mapsto}K_{\gamma}(D_{\alpha},\;b)$ is a one-to-one mapping from the set {$D_{\alpha}$} of overrings of D onto the set of overrings of $K_{\gamma}$(D, b).

The Prime Counting Function (소수계량함수)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.101-109
    • /
    • 2011
  • The Riemann's zeta function $\zeta(s)$ has been known as answer for a number of primes $\pi$(x) less than given number x. In prime number theorem, there are another approximation function $\frac{x}{lnx}$,Li(x), and R(x). The error about $\pi$(x) is R(x) < Li(x) < $\frac{x}{lnx}$. The logarithmic integral function is Li(x) = $\int_{2}^{x}\frac{1}{lnt}dt$ ~ $\frac{x}{lnx}\sum\limits_{k=0}^{\infty}\frac{k!}{(lnx)^k}=\frac{x}{lnx}(1+\frac{1!}{(lnx)^1}+\frac{2!}{(lnx)^2}+\cdots)$. This paper shows that the $\pi$(x) can be represent with finite Li(x), and presents generalized prime counting function $\sqrt{{\alpha}x}{\pm}{\beta}$. Firstly, the $\pi$(x) can be represent to $Li_3(x)=\frac{x}{lnx}(\sum\limits_{t=0}^{{\alpha}}\frac{k!}{(lnx)^k}{\pm}{\beta})$ and $Li_4(x)=\lfloor\frac{x}{lnx}(1+{\alpha}\frac{k!}{(lnx)^k}{\pm}{\beta})}k\geq2$ such that $0{\leq}t{\leq}2k$. Then, $Li_3$(x) is adjusted by $\pi(x){\simeq}Li_3(x)$ with ${\alpha}$ and error compensation value ${\beta}$. As a results, this paper get the $Li_3(x)=Li_4(x)=\pi(x)$ for $x=10^k$. Then, this paper suggests a generalized function $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$. The $\pi(x)=\sqrt{{\alpha}x}{\pm}{\beta}$ function superior than Riemann's zeta function in representation of prime counting.

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

  • Arshad, Muhammad;Mubeen, Shahid;Nisar, Kottakkaran Sooppy;Rahman, Gauhar
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.143-155
    • /
    • 2018
  • In this present paper, our aim is to introduce an extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ which is established with the help of the extended beta function. Also, we investigate certain integral transforms and generalized integration formulas for the newly defined extended Wright-Bessel function $J^{{\lambda},{\gamma},c}_{{\alpha},q}(z)$ and the obtained results are expressed in terms of Fox-Wright function. Some interesting special cases involving an extended Mittag-Leffler functions are deduced.

GENERALIZED (α, β, γ) ORDER AND GENERALIZED (α, β, γ) TYPE ORIENTED SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Tanmay Biswas;Chinmay Biswas
    • The Pure and Applied Mathematics
    • /
    • v.31 no.2
    • /
    • pp.119-130
    • /
    • 2024
  • In this paper we discuss on the growth properties of composite entire and meromorphic functions on the basis of generalized (α, β, γ) order and generalized (α, β, γ) type comparing to their corresponding left and right factors.

HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS

  • Zhong, Ting;Shen, Luming
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.637-647
    • /
    • 2015
  • For generalized continued fraction (GCF) with parameter ${\epsilon}(k)$, we consider the size of the set whose partial quotients increase rapidly, namely the set $$E_{\epsilon}({\alpha}):=\{x{\in}(0,1]:k_{n+1}(x){\geq}k_n(x)^{\alpha}\;for\;all\;n{\geq}1\}$$, where ${\alpha}$ > 1. We in [6] have obtained the Hausdorff dimension of $E_{\epsilon}({\alpha})$ when ${\epsilon}(k)$ is constant or ${\epsilon}(k){\sim}k^{\beta}$ for any ${\beta}{\geq}1$. As its supplement, now we show that: $$dim_H\;E_{\epsilon}({\alpha})=\{\frac{1}{\alpha},\;when\;-k^{\delta}{\leq}{\epsilon}(k){\leq}k\;with\;0{\leq}{\delta}&lt;1;\\\;\frac{1}{{\alpha}+1},\;when\;-k-{\rho}&lt;{\epsilon}(k){\leq}-k\;with\;0&lt;{\rho}&lt;1;\\\;\frac{1}{{\alpha}+2},\;when\;{\epsilon}(k)=-k-1+\frac{1}{k}$$. So the bigger the parameter function ${\epsilon}(k_n)$ is, the larger the size of $E_{\epsilon}({\alpha})$ becomes.

Random Upper Functions for Levy Processes

  • Joo, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.1
    • /
    • pp.93-111
    • /
    • 1993
  • Let ${X(t) : t \geq 0}$ be a real-valued stochastics process with stationary independent increments. In this paper, under the condition of stochastic compactness, we obtain appropriate function $\alpha(t)$ and random function $\beta(t)$ such that for some positive finite constant C, lim sup${X(t) - \alpha(t)}/\beta(t) = C$ a.s. both as t tends to zero and infinity.

  • PDF