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GENERALIZED (α, β, γ) ORDER AND GENERALIZED (α, β, γ)

TYPE ORIENTED SOME GROWTH PROPERTIES OF

COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

Tanmay Biswas a and Chinmay Biswas b, ∗

Abstract. In this paper we discuss on the growth properties of composite entire
and meromorphic functions on the basis of generalized (α, β, γ) order and generalized
(α, β, γ) type comparing to their corresponding left and right factors.

1. Introduction

We denote by C the set of all finite complex numbers. Let g =
+∞∑
n=0

anz
n be an

entire function defined on C. We hope that the reader is familiar with the funda-

mental results and the standard notations of the Nevanlinna theory of meromorphic

functions which are available in [3, 9]. We also use the standard notations and def-

initions of the theory of entire functions which are available in [8, 9] and therefore

we do not explain those in details. For meromorphic function f , the Nevanlinna’s

characteristic function Tf (r) is defined as

Tf (r) = Nf (r) +mf (r),

where mf (r) and Nf (r) are respectively called as the proximity function of f and

the counting function of poles of f in |z| ≤ r. For details about Tf (r),mf (r) and

Nf (r) one may see [3, p.4]. For an entire function g, the Nevanlinna’s Characteristic

function Tg(r) of g is defined as

Tg(r) = mg(r).
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Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)

such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞. Further we

say that α ∈ L1, if α ∈ L with α(a+ b) ≤ α(a) + α(b) + c for all a, b ≥ R0 and fixed

c ∈ (0,+∞). We say that α ∈ L2, if α ∈ L and α(x + O(1)) = (1 + o(1))α(x) as

x → +∞. Finally, α ∈ L3, if α ∈ L and α(a + b) ≤ α(a) + α(b) for all a, b ≥ R0,

i.e., α is subadditive. Clearly L3 ⊂ L1. Particularly, when α ∈ L3, then one can

easily verify that α(mr) ≤ mα(r), m ≥ 2 is an integer. Up to a normalization,

subadditivity is implied by concavity. Indeed, if α(r) is concave on [0,+∞) and

satisfies α(0) ≥ 0, then for t ∈ [0, 1],

α(tx) = α(tx+ (1− t) · 0)

≥ tα(x) + (1− t)α(0) ≥ tα(x),

so that by choosing t = a
a+b or t = b

a+b ,

α(a+ b) =
a

a+ b
α(a+ b) +

b

a+ b
α(a+ b)

≤ α

(
a

a+ b
(a+ b)

)
+ α

(
b

a+ b
(a+ b)

)
= α(a) + α(b), a, b ≥ 0.

As a non-decreasing, subadditive and unbounded function, α(r) satisfies

α(r) ≤ α(r +R0) ≤ α(r) + α(R0)

for any R0 ≥ 0. This yields that α(r) ∼ α(r + R0) as r → +∞. Throughout the

present paper we take α, α1, α2, α3 ∈ L1, β ∈ L2, γ ∈ L3.

Recently Heittokangas et al. [4] have introduced a new concept of φ-order of

entire and meromorphic function considering φ as subadditive function. For details

one may see [4]. Later on Beläıdi et al. [1] have extended the concept and have

introduced the definitions of generalized (α, β, γ) order and generalized (α, β, γ)

lower order of a meromorphic function f, which are as follows:

Definition 1.1 ([1]). The generalized (α, β, γ) order denoted by ρ(α,β,γ)[f ] and

generalized (α, β, γ) lower order denoted by λ(α,β,γ)[f ] of a meromorphic function f

are defined as:

ρ(α,β,γ)[f ] = lim sup
r→+∞

α(log(Tf (r)))

β (log(γ(r)))
and λ(α,β,γ)[f ] = lim inf

r→+∞

α(log(Tf (r)))

β (log(γ(r)))
.

Remark 1.2. Let α(r) = log[p] r, (p ≥ 0), β(r) = log[q] r, (q ≥ 0) and γ(r) = r,

where log[k] x = log(log[k−1] x) (k ≥ 1), with convention that log[0] x = x. If p = 0
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and q = 0, i.e., α(r) = β(r) = r, the Definition 1.1 coincides with the usual order

and lower order, when α(r) = log[p−1] r, (p ≥ 1), β(r) = r, we obtain the iterated

p-order and iterated lower p-order (see [7]), moreover when α(r) = log[p−1] r and

β(r) = log[q−1] r, (p ≥ q ≥ 1), we get the (p, q)-order and lower (p, q)-order (see

[5, 6]).

Beläıdi et al. [2] have recently introduced the definition of another growth indi-

cator, called generalized (α, β, γ) type of a meromorphic function f in the following

way:

Definition 1.3 ([2]). The generalized (α, β, γ) type denoted by σ(α,β,γ)[f ] of a mero-

morphic function f having finite positive generalized (α, β, γ) order(
0 < ρ(α,β,γ)[f ] < +∞

)
is defined as :

σ(α,β,γ)[f ] = lim sup
r→+∞

exp(α(log (Tf (r))))

(exp (β (log(γ(r)))))ρ(α,β,γ)[f ]
.

In this line, further one may introduce the definition of generalized (α, β, γ) lower

type of a meromorphic function f which is as follows:

The generalized (α, β, γ) lower type denoted by σ(α,β,γ)[f ] of a meromorphic func-

tion f having finite positive generalized (α, β, γ) order(
0 < ρ(α,β,γ)[f ] < +∞

)
are defined as :

σ(α,β,γ)[f ] = lim inf
r→+∞

exp(α(log (Tf (r))))

(exp (β (log(γ(r)))))ρ(α,β,γ)[f ]
.

It is obvious that 0 ≤ σ(α,β,γ)[f ] ≤ σ(α,β,γ)[f ] ≤ +∞.

Analogously, to determine the relative growth of two meromorphic functions hav-

ing same non-zero finite generalized (α, β, γ) lower type, one may write the defini-

tions of generalized (α, β, γ) weak type and generalized (α, β, γ) upper weak type

of a meromorphic function f of finite positive generalized (α, β, γ) lower order as

follows:

Definition 1.4. The generalized (α, β, γ) weak type denoted by τ(α,β,γ)[f ] and gen-

eralized (α, β, γ) upper weak type denoted by τ (α,β,γ)[f ] of a meromorphic function

f having finite positive generalized (α, β, γ) lower order
(
0 < λ(α,β,γ)[f ] < +∞

)
are
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defined as :

τ (α,β,γ)[f ] = lim sup
r→+∞

exp(α(log (Tf (r))))

(exp (β (log(γ(r)))))λ(α,β,γ)[f ]

and τ(α,β,γ)[f ] = lim inf
r→+∞

exp(α(log (Tf (r))))

(exp (β (log(γ(r)))))λ(α,β,γ)[f ]
.

It is obvious that 0 ≤ τ(α,β,γ)[f ] ≤ τ (α,β,γ)[f ] ≤ +∞.

In this paper we study some growth properties of composite entire and meromor-

phic functions on the basis of generalized (α, β, γ) order, generalized (α, β, γ) type

and generalized (α, β, γ) weak type as compared to the growth of their corresponding

left and right factors.

2. Main Results

In this section, the main results of the paper are presented.

Theorem 2.1. Let f be a meromorphic function and g be an entire function such

that 0 < λ(α1,β,γ)[f(g)] ≤ ρ(α1,β,γ)[f(g)] < +∞ and 0 < λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] <

+∞. Then

λ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
≤ lim inf

r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤ min

{
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
,
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]

}
≤ max

{
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
,
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]

}
≤ lim sup

r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
ρ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Proof. From the definitions of λ(α1,β,γ)[f(g)], ρ(α1,β,γ)[f(g)], λ(α2,β,γ)[f ], ρ(α2,β,γ)[f ]

and we have for arbitrary positive ε and for all sufficiently large values of r such

that

(2.1) α1

(
log(Tf(g)(r))

)
>

(
λ(α1,β,γ)[f(g)]− ε

)
β(log(γ(r))),

(2.2) α1

(
log(Tf(g)(r))

)
≤

(
ρ(α1,β,γ)[f(g)] + ε

)
β(log(γ(r))),

(2.3) α2 (log(Tf (r))) >
(
λ(α2,β,γ)[f ]− ε

)
β(log(γ(r)))

(2.4) and α2 (log(Tf (r))) ≤
(
ρ(α2,β,γ)[f ] + ε

)
β(log(γ(r))).
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Again for a sequence of values of r tending to infinity,

(2.5) α1

(
log(Tf(g)(r))

)
≤

(
λ(α1,β,γ)[f(g)] + ε

)
β(log(γ(r))),

(2.6) α1

(
log(Tf(g)(r))

)
>

(
ρ(α1,β,γ)[f(g)]− ε

)
β(log(γ(r))),

(2.7) α2 (log(Tf (r))) ≤
(
λ(α2,β,γ)[f ] + ε

)
β(log(γ(r)))

(2.8) and α2 (log(Tf (r))) >
(
ρ(α2,β,γ)[f ]− ε

)
β(log(γ(r))).

Now from (2.1) and (2.4) it follows for all sufficiently large values of r that

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

>
λ(α1,β,γ)[f(g)]− ε

ρ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we obtain that

(2.9) lim inf
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

>
λ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
,

which is the first part of the theorem.

Combining (2.5) and (2.3) , we have for a sequence of values of r tending to

infinity that
α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
λ(α1,β,γ)[f(g)] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary it follows that

(2.10) lim inf
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Again from (2.1) and (2.7), for a sequence of values of r tending to infinity, we

get
α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≥
λ(α1,β,γ)[f(g)]− ε

λ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we get from above that

(2.11) lim sup
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≥
λ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.

Now, it follows from (2.3) and (2.2) , for all sufficiently large values of r that

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
ρ(α1,β,γ)[f(g)] + ε

λ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

(2.12) lim sup
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
ρ(α1,β,γ)[f(g)]

λ(α2,β,γ)[f ]
.
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Which is the last part of the theorem.

Now from (2.2) and (2.8) , it follows for a sequence of values of r tending to

infinity that
α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
ρ(α1,β,γ)[f(g)] + ε

ρ(α2,β,γ)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

(2.13) lim inf
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

≤
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
.

So combining (2.4) and (2.6) , we get for a sequence of values of r tending to

infinity that
α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

>
ρ(α1,β,γ)[f(g)]− ε

ρ(α2,β,γ)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

(2.14) lim sup
r→+∞

α1

(
log(Tf(g)(r))

)
α2 (log(Tf (r)))

>
ρ(α1,β,γ)[f(g)]

ρ(α2,β,γ)[f ]
.

So, the second part of the theorem follows from (2.10) and (2.13) ,the third part is

trivial and fourth part follows from (2.11) and (2.14) .

Thus the theorem follows from (2.9) , (2.10) , (2.11), (2.12) , (2.13) and (2.14) . �

Remark 2.2. If we take “ 0 < λ(α3,β,γ)[g] ≤ ρ(α3,β,γ)[g] < +∞” instead of “ 0 <

λ(α2,β,γ)[f ] ≤ ρ(α2,β,γ)[f ] < +∞” and other conditions remain same, the conclusion

of Theorem 2.1 remains true with “λ(α3,β,γ)[g]”, “ρ(α3,β,γ)[g]” and “α3 (log(Tg(r)))”

in place of “λ(α2,β,γ)[f ]”, “ρ(α2,β,γ)[f ]” and “α2 (log(Tf (r)))” respectively in the de-

nominator.

Theorem 2.3. Let f be a meromorphic function and g be a non-constant entire

function such that 0 < λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞ and λ(α,β,γ)[f(g)] = +∞.

Then

lim
r→+∞

α(log(Tf(g)(r)))

α(log(Tf (r)))
= +∞.

Proof. If possible, let the conclusion of the theorem does not hold. Then we can

find a constant ∆ > 0 such that for a sequence of values of r tending to infinity

(2.15) α(log(Tf(g)(r))) ≤ ∆ · α(log(Tf (r))).

Again from the definition of ρ(α,β,γ)[f ], it follows for all sufficiently large values of r

that

(2.16) α(log(Tf (r))) ≤ (ρ(α,β,γ)[f ] + ϵ)β(log(γ(r))).
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From (2.15) and (2.16), for a sequence of values of r tending to +∞, we have

α(log(Tf(g)(r))) ≤ ∆(ρ(α,β,γ)[f ] + ϵ)β(log(γ(r)))

i.e.,
α(log(Tf(g)(r)))

β(log(γ(r)))
≤ ∆(ρ(α,β,γ)[f ] + ϵ)

i.e., lim inf
r→+∞

α(log(Tf(g)(r)))

β(log(γ(r)))
< +∞.

i.e., λ(α,β,γ)[f(g)] < +∞.

This is a contradiction.

Thus the theorem follows. �

Remark 2.4. If we take “ 0 < λ(α,β,γ)[g] ≤ ρ(α,β,γ)[g] < +∞” instead of “ 0 <

λ(α,β,γ)[f ] ≤ ρ(α,β,γ)[f ] < +∞” and other conditions remain same, the conclusion of

Theorem 2.3 remains true with “α(log(Tg(r)))” in replace of “α (log(Tf (r)))” in the

denominator.

Remark 2.5. Theorem 2.3 and Remark 2.4 are also valid with “limit superior”

instead of “limit” if “λ(α,β,γ)[f(g)] = +∞” is replaced by “ρ(α,β,γ)[f(g)] = +∞” and

the other conditions remain the same.

Theorem 2.6. Let f be a meromorphic function and g be an entire function such

that 0 < σ(α1,β,γ)[f(g)] ≤ σ(α1,β,γ)[f(g)] < +∞, 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞
and ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ]. Then

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
≤ lim inf

r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))

≤ min

{
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
,
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]

}
≤ max

{
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
,
σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]

}
≤ lim sup

r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Proof. From the definitions of σ(α2,β,γ)[f ], σ(α2,β,γ)[f ], σ(α1,β,γ)[f(g)]and σ(α1,β,γ)[f(g)],

we have for arbitrary positive ε(> 0) and for all sufficiently large values of r that

(2.17)

exp(α1(log
(
Tf(g)(r))

)
) ≤

(
σ(α1,β,γ)[f(g)] + ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)

[f(g)],
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(2.18)

exp(α1(log
(
Tf(g)(r))

)
) ≥

(
σ(α1,β,γ)[f(g)]− ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)

[f(g)],

(2.19) exp(α2(log (Tf (r)))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)

[f ],

(2.20) exp(α2(log (Tf (r)))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)

[f ].

Again for a sequence of values of r tending to infinity, we get that

(2.21) exp(α1(log
(
Tf(g)(r))

)
) > (σ(α1,β,γ)[f(g)]−ε)(exp(β(log(γ(r)))))ρ(α1,β,γ)

[f(g)],

(2.22)

exp(α1(log
(
Tf(g)(r))

)
) ≤

(
σ(α1,β,γ)[f(g)] + ε

)
(exp(β(log(γ(r)))))ρ(α1,β,γ)

[f(g)],

(2.23) exp(α2(log (Tf (r)))) ≤
(
σ(α2,β,γ)[f ] + ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)

[f ],

(2.24) exp(α2(log (Tf (r)))) ≥
(
σ(α2,β,γ)[f ]− ε

)
(exp(β(log(γ(r)))))ρ(α2,β,γ)

[f ].

Now from (2.18), (2.19) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], it follows

for all sufficiently large values of r that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
>

σ(α1,β,γ)[f(g)]− ε

σ(α2,β,γ)[f ] + ε
.

As ε (> 0) is arbitrary, we obtain from above that

(2.25) lim inf
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
>

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Combining (2.22) and (2.20) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], we

get for a sequence of values of r tending to infinity that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, it follows from above that

(2.26) lim inf
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Now from (2.18), (2.23) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], we obtain

for a sequence of values of r tending to infinity that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≥

σ(α1,β,γ)[f(g)]− ε

σ(α2,β,γ)[f ] + ε
.
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As ε (> 0) is arbitrary, we get from above that

(2.27) lim sup
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≥

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

In view of the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], it follows from (2.20) and

(2.17) for all sufficiently large values of r that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.

Since ε (> 0) is arbitrary, we obtain that

(2.28) lim sup
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Now from (2.17), (2.24) and the condition ρ(α1,β,γ)[f(g)] = ρ(α2,β,γ)[f ], it follows

for a sequence of values of r tending to infinity that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)] + ε

σ(α2,β,γ)[f ]− ε
.

As ε (> 0) is arbitrary, we obtain that

(2.29) lim inf
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

So combining (2.19) and (2.21) and in view of the condition ρ(α1,β,γ)[f(g)] =

ρ(α2,β,γ)[f ], we get for a sequence of values of r tending to infinity that

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
>

σ(α1,β,γ)[f(g)]− ε

σ(α2,β,γ)[f ] + ε
.

Since ε (> 0) is arbitrary, it follows that

(2.30) lim sup
r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
>

σ(α1,β,γ)[f(g)]

σ(α2,β,γ)[f ]
.

Thus the theorem follows from (2.25) , (2.26) , (2.27), (2.28) , (2.29) and (2.30) . �

Remark 2.7. If we take “ 0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞”and “ρ(α1,β,γ)[f(g)] =

ρ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)]

= ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.6 re-

main true with “σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and “exp(α3(log (Tg(r))))” instead of

“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log (Tf (r))))” respectively in the denomi-

nator.
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Remark 2.8. If we take “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)] =

λ(α2,β,γ)[f ]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)] =

ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.6 remain

true with “τ (α2,β,γ)[f ]” and “τ(α2,β,γ)[f ]” in place of “σ(α2,β,γ)[f ]” and “σ(α2,β,γ)[f ]“

respectively in the denominator.

Remark 2.9. If we take “ 0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞” and “ρ(α1,β,γ)[f(g)] =

λ(α3,β,γ)[g]” instead of “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “ρ(α1,β,γ)[f(g)]

= ρ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.6 re-

main true with “τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log (Tg(r))))” in place of

“σ(α2,β,γ)[f ]”, “σ(α2,β,γ)[f ]” and “exp(α2(log (Tf (r))))” respectively in the denomi-

nator.

Now in the line of Theorem 2.6 , one can easily prove the following theorem using

the notions of generalized (α, β, γ) weak type and generalized (α, β, γ) upper weak

type and so the proof is omitted.

Theorem 2.10. Let f be a meromorphic function and g be an entire function such

that 0 < τ(α1,β,γ)[f(g)] ≤ τ (α1,β,γ)[f(g)] < +∞, 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞
and λ(α1,β,γ)[f(g)] = λ(α2,β,γ)[f ]. Then

τ(α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]
≤ lim inf

r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))

≤ min

{
τ(α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
,
τ (α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]

}
≤ max

{
τ(α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
,
τ (α1,β,γ)[f(g)]

τ (α2,β,γ)[f ]

}
≤ lim sup

r→+∞

exp(α1(log
(
Tf(g)(r))

)
)

exp(α2(log (Tf (r))))
≤

τ (α1,β,γ)[f(g)]

τ(α2,β,γ)[f ]
.

Remark 2.11. If we take “ 0 < τ(α3,β,γ)[g] ≤ τ (α3,β,γ)[g] < +∞” and “λ(α1,β,γ)[f(g)]

= λ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)]

= λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.10 re-

main true with “τ(α3,β,γ)[g]”, “τ (α3,β,γ)[g]” and “exp(α3(log (Tg(r))))” in place of

“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log (Tf (r))))” respectively in the denomi-

nator.

Remark 2.12. If we take “ 0 < σ(α2,β,γ)[f ] ≤ σ(α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)]

= ρ(α2,β,γ)[f ]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)]
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= λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.10 remain

true with “σ(α2,β,γ)[f ]” and “σ(α2,β,γ)[f ]” in place of “τ(α2,β,γ)[f ]” and “τ (α2,β,γ)[f ]”

respectively in the denominator.

Remark 2.13. If we take “ 0 < σ(α3,β,γ)[g] ≤ σ(α3,β,γ)[g] < +∞” and “λ(α1,β,γ)[f(g)]

= ρ(α3,β,γ)[g]” instead of “ 0 < τ(α2,β,γ)[f ] ≤ τ (α2,β,γ)[f ] < +∞” and “λ(α1,β,γ)[f(g)]

= λ(α2,β,γ)[f ]” and other conditions remain same, the results of Theorem 2.10 re-

main true with “σ(α3,β,γ)[g]”, “σ(α3,β,γ)[g]” and “exp(α3(log (Tg(r))))” in place of

“τ(α2,β,γ)[f ]”, “τ (α2,β,γ)[f ]” and “exp(α2(log (Tf (r))))” respectively in the denomi-

nator.
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