• Title/Summary/Keyword: Alloy element

Search Result 831, Processing Time 0.025 seconds

Fatigue Strength Evaluation of Butt Welded Aluminum Alloy Component for Railway Vehicles (철도차량용 대형 알루미늄 압출재 용접부의 피로강도 평가)

  • 한승우;이학주;이상록
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.242-249
    • /
    • 2000
  • The fatigue strength of welded aluminum alloy component has been evaluated. Extruded aluminum alloy component Al 6005-T6 was considered. That component could be one of appropriate candidates for floor structure in railway cars. Finite element analysis has been performed to obtain stress distribution in the welded aluminum component. The results of finite element analysis have been applied in designing the experimental setup for fatigue strength evaluation of welded component. Three point bending fatigue test has been employed, until fracture occurs, to evaluate the fatigue strength of the welded component. In addition, the fatigue strength of the component has been compared with that of specimen.

  • PDF

Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy (국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화)

  • Cho, Sung-Am;Ko, Hyun-Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

Development of Ultra Thin Notebook Case Usins Mg Alloy Sheet (초박판 마그네슘 노트북 케이스 개발)

  • Lee, K.T.;Beak, H.J.;Hwang, S.H.;Choi, C.S.;Kim, H.J.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.383-386
    • /
    • 2008
  • Magnesium alloy sheets have been extending their field of applications to automotive and electronic industries taking advantage of their excellent light weight property. In addition to their excellent light property, magnesium alloys have several other advantages: high specific strength, good welding capability and corrosion resistance. Taking advantage of these benefits, magnesium alloys have also been substituting the polymeric materials in the electronic devices industries. In sheet metal forming application with magnesium alloys, the lower formability and high springback due to the lower elastic property (Young's modulus=45 GPa) at room temperature are major hurdles by which magnesium alloys have limited applications. In this study, commercial notebook case was adopted as the benchmark model, and then design parameters and process conditions are analyzed by the finite element simulation and physical try-outs.

  • PDF

Parametric Study of Steel-Al Alloy SPR Joint Process via Finite Element Analysis (유한요소해석을 통한 Steel-Al합금 SPR 접합공정 주요인자 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.301-306
    • /
    • 2020
  • The parametric study of Steel-Al alloy SPR joint process is based on the FE simulation described by Kim et al. [10], which was validated by comparing experimental and simulation results for two kinds of steel-Al alloy combinations according to the lower sheet thickness. To analyze the SPR joint process, the friction coefficient, the lower sheet thickness, and the rivet length were selected as the main parameters. Based on FE simulations, the effect of main parameters was investigated by measuring the interlock and the bottom thickness at the cross-sectional shape of the SPR joint. The results of simulation facilitate the design of SPR joint process in various metal combinations.

A study on Au-Sn alloy plating layer improving reliability of electrical contacts (전자부품 커넥터의 접속 신뢰성 향상을 위한 Au-Sn 합금 도금층 연구)

  • Choi, Jong Hwan;Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.408-416
    • /
    • 2022
  • In this study, the effect of Au-Sn alloy coating on reliability of electrical contacts was investigated via comparison with Au-Co alloy coating. The results show that Au-Sn alloy exhibited lower contact resistance and higher solder spreadability than those of Au-Co alloy after thermal aging. In the case of Au-Co alloy plating, the underlying Ni element diffused into Au-Co layer to form Ni oxides on surface during thermal aging, leading to increased contact resistance and decreased solder spreadability. Meanwhile, for Au-Sn alloy plating, Au-Ni-Sn metallic compound was formed at the interface between Au-Sn layer and underlying Ni layer. This compound acted as a diffusion barrier, thereby inhibiting the diffusion of Ni to Au-Sn layer during thermal aging. Consequently, Au-Sn alloy layer showed better contact reliability than that of Au-Co alloy layer.

Analysis of Variation in the Surface Morphology of Aluminum Alloy by Repetitive Pulsed-laser Irradiation (반복적인 펄스레이저 조사에 의한 알루미늄 합금의 표면상태 변화분석)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.897-903
    • /
    • 2011
  • The objective of this study is to investigate the thermal behavior on material surface and the variation in the surface morphology of aluminum 6061 alloy by the Nd:YAG pulsed-laser irradiation. First, we predicted the surface temperature variation during pulsed-laser irradiation by using the two dimensional finite element analysis. When the pulsed-laser of 133 mJ energy and 5 ns pulse duration is irradiated on the surface of aluminum alloy, the material surface is thought to be melting because the surface temperature rises steadily up to about $660^{\circ}C$ exceeding the melting point. Also, the experimental results show that the solidification microstructure has been developed clearly after surface melting. Second, the diameter of melted zone was analysed by finite element analysis and measured by OM(Optical Microscopy). It increased logarithmically with increase in the number of laser irradiation. In addition, AFM(Atomic Force Microscopy) measurement showed an increase in the average surface roughness during pulsed-laser irradiation.

Prediction of Welding Residual Stress of Dissimilar Metal Weld of Nozzle using Finite Element Analyses (유한요소해석을 이용한 노즐 이종금속용접부의 용접잔류응력 예측)

  • Huh, Nam-Su;Kim, Jong-Wook;Choi, Suhn;Kim, Tae-Wan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.83-84
    • /
    • 2008
  • The primary water stress corrosion cracking (PWSCC) of dissimilar metal weld based on Alloy 82/182 is one of major issues in material degradation of nuclear components. It is well known that the crack initiation and growth due to PWSCC is influenced by material's susceptibility to PWSCC and distribution of welding residual stress. Therefore, modeling the welding residual stress is of interest in understanding crack formation and growth in dissimilar metal weld. Currently in Korea, a numerical round robin study is undertaken to provide guidance on the welding residual stress analysis of dissimilar metal weld. As a part of this effort, the present paper investigates distribution of welding resisual stress of a ferritic low alloy steel nozzle with dissimilar metal weld using Alloy 82/182. Two-dimensional thermo-mechanical finite element analyses are carried out to simulate multi-pass welding process on the basis of the detailed design and fabrication data. The present results are compared with those from other participants, and more works incorporating physical measurements are going to be performed to quantify the uncertainties relating to modelling assumptions.

  • PDF

Implementation of Polycrystal Model in Rigid Plastic Finite Element Method (강소성 유한요소법에서의 다결정 모델의 구현)

  • Kang, G.P.;Lee, K.;Kim, Y.H.;Shin, K.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.286-292
    • /
    • 2017
  • Magnesium alloy shows strong anisotropy and asymmetric behavior in tension and compression curve, especially at room temperature. These characteristics limit the application of finite element method (FEM) which is based on conventional continuum mechanics. To accurately predict the material behavior of magnesium alloy at microstructural level, a methodology of fully coupled multiscale simulation is presented and a crystal plasticity model as a constitutive equation in the simulation of metal forming process is introduced in this study. The existing constitutive equation for rigid plastic FEM is modified to accommodate deviatoric stress component and its derivatives with respect to strain rate components. Viscoplastic self-consistent (VPSC) polycrystal model was selected as a constitutive model because it was regarded as the most robust model compared to Taylor model or Sachs model. Stiffness matrix and load vector were derived based on the new approach and implemented into $DEFORM^{TM}-3D$ via a user subroutine handling stiffness matrix at an elemental level. The application to extrusion and rolling process of pure magnesium is presented in this study to assess the validity of the proposed multiscale process.

Study on Thermal behavior of Flexible CIGS Thin Film Solar Cell on Fe-Ni Alloy Substrates using Finite Element Analysis (유한요소해석을 이용한 CIGS 박막 태양전지용 Fe-Ni 합금 기판재 열적 거동 연구)

  • Han, Yun-Ho;Lee, Min-Su;Kim, Dong-Hwan;Yim, Tai-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.23-26
    • /
    • 2015
  • What causes the transformation of a solar cell is the behavior difference of thermal expansion occurred between the substrate and the layer of semiconductor used in the solar cell. Therefore, the substrate has to possess a behavior of thermal expansion that is similar with that of semiconductor layer. This study employed electroforming to manufacture Fe-Ni alloy materials of different compositions. To verify the result from a finite element analysis, a two-dimensional Mo substrate was calculated and its verification experiment was conducted. The absolute values from the finite element analysis of Mo/substrate structure and its verification experiment showed a difference. However, the size of residual stress of individual substrate compositions had a similar tendency. Two-dimensional CIGS/Mo/$SiO_2$/substrate was modeled. Looking into the residual stress of CIGS layer occurred while the temperature declined from $550^{\circ}C$ to room temperature, the smallest residual stress was found with the use of Fe-52 wt%Ni substrate material.