• Title/Summary/Keyword: All-Solid-State Electrode

Search Result 21, Processing Time 0.023 seconds

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Assessment of In-Situ Solid-State Reference Electrode for Monitoring Corrosion of Steel Rebar in Simulated Concrete Environments (모의 콘크리트 환경에서 강철 철근의 부식을 모니터링하기 위한 현장 고체 기준 전극 평가)

  • Karthick, Subbiah;Park, TaeJoon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.281-282
    • /
    • 2023
  • The solid-state reference electrodes made of polyaniline-coated MnO2 (SSRE-PAM) and their electrochemical characteristics were studied in simulated concrete pore solutions (SCPS) containing 0 and 3.5% NaCl. Saturated calomel electrodes (SCE) have been used to conduct electrochemical studies on the stability behavior of SSRE-PAM. Open circuit potential (OCP) and potentiodynamic polarization techniques were used to assess the corrosion performance of steel rebar exposed in SCPS with 0 and 3.5% NaCl using SSRE-PAM. The results demonstrate that the SSRE-PAM was capable of identifying steel rebar in a concrete environment that was either passive or active. Potentiodynamic polarization parameters such as Ecorr and Icorr for steel rebar in SCPS containing 0 and 3.5%)NaCl are greater than that of the passive condition (0% NaCl). All the studies validate the importance of using SSRE-PAM for corrosion monitoring applications in concrete structures.

  • PDF

Fabrication and charaterization of $RuO_2$based thin film supercapacitor ($RuO_2$박막을 이용한 박막 슈퍼캐패시터의 제작 및 분석)

  • 임재홍;최두진;전은정;남성철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.920-923
    • /
    • 2000
  • All solid-state thin film supercapacitor(TFSC) based on $RuO_2$ electrode was fabricated. Ruthenium oxide$(RuO_2)$ thin film was deposited on Pt/Ti/Si subsrate by d.c. magnetron sputtering. LiPON(lithium phosphorus oxynitride) thin film were deposited by r.f. reactive sputtering. X-ray diffraction patterns of $RuO_2$ and LiPON films revealed that crystal structures of both films were amorphous. To decrease resistivity of $RuO_2$ thin film, $RuO_2$ thin film was deposited with $H_2O$ vapor. In order to decide the maximum ionic conductivity, the LiPON films were prepared by various sputtering condition. The maximum ionic conductivity was $9.5\times{10}^7S/cm$. A charge-discharge measurements showed the capacity of $3\times{10-2}\;F/cm^2-\mu{m}$ for the as-fabricated TFSC. The discharging efficiency was decreased after 500 cycles by 40 %.

  • PDF

Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte (탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석)

  • Kim, Chang Hyun;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • In this study, flexible supercapacitor based on the all solid state electrolyte with PVA (polyvinyl alcohol)-$H_3PO_4$, ionic liquid as a BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate) and reduced graphene oxide/conductive polymer composite was fabricated and characterized electrochemical properties with function of its flexibility. In order to measure and compare that electrochemical performances (including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge,after 0~100th bending test) of prepared flexible supercapacitor based on reduced graphene oxide/conducting polymer composite and all solid state electrolyte, we have conducted press machine with constant pressure ( 0.01/cm2) for $100^{th}$ bending test. As a result, specific capacitance of the flexible supercapacitor was 43.9 F/g which value decreased to 42.0 and 40.1 F/g after 50 and $100^{th}$ bending test, respectively. This result exhibited that decreased electrochemical property of the flexible supercapacitor effected on physical stress on the electrode after repeated bending test. In addition, we have measured that electrode surface morphology by SEM to prove its decreased electrochemical property of the flexible supercapacitor after prolonged bending test.

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material (금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석)

  • Lee, Kyu Seok;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2020
  • In this study, supercapacitor based on the all solid state electrolyte with PVA(polyvinyl alcohol), ionic liquid as a BMIMBF4(1-buthyl-3-methylimidazolium tetrafluoroborate) and activated carbon/Ni-MOF composite was fabricated and characterized its electrochemical properties with function of MOF. In order to analysis and comparison that electrochemical performances [including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test] of prepared supercapacitor based on activated carbon/Ni-MOF composite and all solid state electrolyte. As a result, specific capacitance of the supercapacitor without Ni-MOF was 380 F/g which value decreased to 340 F/g after adding Ni-MOF to activated carbon as a electrode material. This result exhibited that decreased electrochemical property of the supercapacitor effected on physical hinderance in the electrode. In further, it needs to optimization of the Ni-MOF amount (wt%) in the electrode composite to maximize its electrochemical performances.

Characterization of $YBa_2Cu_3O_{7-x}F_y$ Superconducting Materials Made by a Sol-Gel Process (졸-겔법으로 제조한 $YBa_2Cu_3O_{7-x}F_y$ 초전도물질의 특성분석)

  • 김봉흡;강형부;김현택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.525-532
    • /
    • 1992
  • Fluorine-doped YBaS12TCuS13TOS17-xTFS1yT superconducting materials with y varing two orders of magnitude form 0.02 to 2.0 have been prepared by a sol-gel process by using metal nitrate salts, sodium hydroxide and sodium fluoride. Fluorine contents have been measured using an ion-selective electrode. All fluorine doped as reactant were found to be present in the resulted samples. From the observation of XRD it has been concluded that the samples with y 0.2 formed simply the single phase of perovskite structure, whereas those with y 0.5 yielded together some compounds such as BaFS12T, YFS13T and CuO in the resulted samples. The observation of solid state S019TF NMR has been carried out in order to check whether fluorine was actually incorporated into the lattice sites, and the experimental results revealed that the mole ratio of fluorine incorporated into the lattice sites of YBaS12TCuS13TOS17-xT was approximately 0.2 per mole of the compound. Also electrical resistivity measurement indicated that onset transition temperature has the tendency to increase slightly with increasing y in the dilute region as y 0.2.

  • PDF

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Fabrication and Analysis of Thin Film Supercapacitor using a Cobalt Oxide Thin Film Electrode (코발트 산화물 박막을 이용한 박막형 슈퍼 캐패시터의 제작 및 특성평가)

  • Kim, Han-Gi;Im, Jae-Hong;Jeon, Eun-Jeong;Seong, Tae-Yeon;Jo, Won-Il;Yun, Yeong-Su
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.339-344
    • /
    • 2001
  • An all solid-state thin film supercapacitor (TFSC) with Co$_3$O$_4$/LiPON/Co$_3$O$_4$ structure was fabricated on Pt/Ti/Si substrate using Co$_3$O$_4$ thin film electrode. Each Co$_3$O$_4$ film was grown by reactive dc reactive magnetron sputtering with increasing $O_2$/[Ar+O$_2$] ratio. Amorphous LiPON electrolyte film was deposited on Co$_3$O$_4$/Pt/Ti/Si in pure nitrogen ambient by using reactive rf magnetron sputtering. The electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ multi-layer structures exhibits a behavior of a bulk-type supercapacitor, even though much lower capacity (from 5 to 25 mF/$\textrm{cm}^2$-$\mu\textrm{m}$) than that of the bulk one. It was found that the TFSC showed a fairly constant discharge capacity with a constant current of 50 $\mu\textrm{A}/\textrm{cm}^2$ at the cut-off voltage 0-2V during 400 cycles. It is shown that the electrochemical behavior of the Co$_3$O$_4$/LiPON/Co$_3$O$_4$ TFSC is dependent upon the sputtering gas ratio. The capacity dependency of electrode films on different gas ratios was explained by different structural, electrical, and surfacical properties.

  • PDF