Browse > Article
http://dx.doi.org/10.33961/jecst.2022.00143

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery  

Chen, Fei (Shenzhen Institute of Wuhan University of Technology)
Zhang, Gang (State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology)
Zhang, Yiluo (State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology)
Cao, Shiyu (Shenzhen Institute of Wuhan University of Technology)
Li, Jun (Sinopec Shanghai Research Institute of Petrochemical Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 362-368 More about this Journal
Abstract
The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.
Keywords
All-Solid-State Li-S Battery; PEO-LiTFSI-LLZO Composite Electrolyte; Composite Sulfur Cathode; Electron/Ion Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Bag, C. Zhou, P. J. Kim, V. G. Pol, V. Thangadurai, Energy Storage Mater. 2020, 24, 198-207.   DOI
2 W. P. Wang, J. Zhang, J. Chou, Y. X. Yin, Y. You, S. Xin, Y. G. Guo, Adv. Energy Mater. 2020, 11(2), 2000791.
3 I. Gracia, H. Ben Youcef, X. Judez, U. Oteo, H. Zhang, C. Li, L. M. Rodriguez-Martinez, M. Armand, J. Power Sources 2018, 390, 148-152.   DOI
4 B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin, X. Lu, H. Dou, A. Kumar Nanjundan, G. Yushin, X. Zhang, Y. Yamauchi, Mater. Today 2020, 40, 114-131.   DOI
5 Q. Shao, D. Guo, C. Wang, J. Chen, J. Alloys Compd. 2020, 842, 155790.   DOI
6 A. Sakuda, Y. Sato, A. Hayashi, M. Tatsumisago, Energy Technol. 2019, 7(12), 1900077.   DOI
7 F. Chen, Y. Zhang, Q. Hu, S. Cao, S. Song, X. Lu, Q. Shen, J. Solid State Chem. 2021, 301, 122341.   DOI
8 L. Wang, X. Yin, C. Jin, C. Lai, G. Qu, G. W. Zheng, ACS Appl. Energy Mater. 2020, 3(12), 11540-11547.
9 W. Zha, F. Chen, D. Yang, Q. Shen, L. Zhang, J. Power Sources 2018, 397, 87-94.   DOI
10 F. Han, T. Gao, Y. Zhu, K. J. Gaskell, C. Wang, Adv. Mater. 2015, 27(23), 3473-3483.   DOI
11 N. H. H. Phuc, K. Hikima, H. Muto, A. Matsuda, Crit. Rev. Solid State Mater. Sci. 2021, 1-26.
12 Z. Zhou, Z. Wang, J. Ji, K. Fu, C. Cao, J. Yang, Y. Xue, C. Tang, Mater. Lett. 2020, 276, 128243.   DOI
13 M. Nagao, A. Hayashi, M. Tatsumisago, Electrochim. Acta 2011, 56(17), 6055-6059.   DOI
14 Y. Zhang, T. Liu, Q. Zhang, X. Zhang, S. Wang, X. Wang, L. Li, L.-Z. Fan, C.-W. Nan, Y. Shen, J. Mater. Chem. A 2018, 6(46), 23345-23356.   DOI
15 Q. Shao, Z.-S. Wu, J. Chen, Energy Storage Mater. 2019, 22, 284-310.
16 L. Li, Y. Deng, G. Chen, J. Energy Chem. 2020, 50, 154-177.   DOI
17 H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Nano. Lett. 2015, 15(1), 798-802.   DOI
18 X. Xiang, Y. Liu, F. Chen, W. Yang, J. Yang, X. Ma, D. Chen, K. Su, Q. Shen, L. Zhang, J. Eur. Ceram. Soc. 2020, 40(8), 3065-3071.   DOI
19 Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu, X. Zhang, X. Wang, Y. Shen, Y.-H. Lin, M. Li, L.-Z. Fan, L. Li, C.-W. Nan, Energy Storage Mater. 2020, 25, 145-153.
20 C. Zhang, Y. Lin, Y. Zhu, Z. Zhang, J. Liu, RSC Adv. 2017, 7(31), 19231-19236.   DOI