DOI QR코드

DOI QR Code

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering

Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가

  • Park, Jun-Seob (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Jong-Heon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
  • 박준섭 (충남대학교 신소재공학과) ;
  • 김종헌 (충남대학교 신소재공학과) ;
  • 김현석 (충남대학교 신소재공학과)
  • Received : 2021.09.27
  • Accepted : 2021.10.14
  • Published : 2021.11.27

Abstract

As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.

Keywords

Acknowledgement

This research was supported by Chungnam National University.

References

  1. M. S. Dresselhaus and I. L. Thomas, Nature, 414, 332 (2001). https://doi.org/10.1038/35104599
  2. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
  3. M. Armand and J. M. Tarascon, Nature, 451, 652 (2008). https://doi.org/10.1038/451652a
  4. Y. Nishi, J. Power Sources, 100, 101 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4
  5. J. Schnell, T. Gunther, T. Knoche, C. Vieider, L. Kohler, A. Just, M. Keller, S. Passerini and G. Reinhart, J. Power Sources., 382, 160 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.062
  6. P. G. Balakrishnan, R. Ramesh and T. P. Kumar, J. Power Sources., 155, 401 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.002
  7. W. Li, J. R. Dahn and D. S. Wainwright, Science, 264, 5162 (1994).
  8. K. Takada, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama and R. Kanno, Solid State Ionics, 158, 269 (2003). https://doi.org/10.1016/S0167-2738(02)00823-8
  9. S. Ohta, T. Kobayashi, J. Seki and T. Asaoka, J. Power Sources, 202, 332 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.064
  10. F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L, Lu, J. Power Sources, 389, 198 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
  11. L. Li, S. Liu, Y. Gong, D. P. Wilkinson and J. Zhang, Nano Energy, 33, 363 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028
  12. M. Duclot and J. L. Souquet, J. Power Sources, 97, 610 (2001) https://doi.org/10.1016/S0378-7753(01)00641-3
  13. R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem., Int. Ed., 46, 7778 (2007). https://doi.org/10.1002/anie.200701144
  14. C. F. Xiao, J. H. Kim, D. Choi, Y. C. Park, J. H. Kim, J. Park, Y. J. Kim and H. S. Kim, J. Alloys Compd., 801, 550 (2019). https://doi.org/10.1016/j.jallcom.2019.06.151
  15. M. A. Salih, A. Caglar, A.Kivrak and H. Kivrak, Nano-science Nanotechnology, 4, 132 (2017).
  16. F. Sen, Y. Karatas, M. Gulcan and M. Zahmakiran, RSC Adv., 4, 1526 (2014). https://doi.org/10.1039/C3RA43701A
  17. H. Kim and N. Cho, Nanoscale Res. Lett., 7, 408 (2012). https://doi.org/10.1186/1556-276X-7-408
  18. I. Seo and S. W. Martin, Inorg. Chem., 50, 2143 (2011). https://doi.org/10.1021/ic101448m
  19. C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke and W. Weppner, Inorg. Chem., 50, 1089 (2011). https://doi.org/10.1021/ic101914e
  20. S. Lorger, R. Usiskin and J. Maier, J. Electrochem. Soc., 166, 2215 (2019).
  21. D. J. Kalita, S. H. Lee, K. S. Lee, D. H. Ko and Y. S. Yoon, Solid State Ionics, 229, 14 (2012). https://doi.org/10.1016/j.ssi.2012.09.011