Browse > Article
http://dx.doi.org/10.14478/ace.2021.1098

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite  

Choi, Jae Hong (Department of Graphic Arts Information Engineering, Pukyong National University)
Oh, Pilgun (Department of Graphic Arts Information Engineering, Pukyong National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 58-63 More about this Journal
Abstract
Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.
Keywords
Graphite; Amorphous carbon; Annealing; All-solid-state lithium-ion batteries (ASSLB);
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Takada, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, and R. Kanno, Solid-State Lithium Battery with Graphite Anode, Solid State Ion., 158, 269-274 (2003).   DOI
2 K. Kuratani, A. Sakuda, T. Takeuchi, and H. Kobayashi, Elucidation of Capacity Degradation for Graphite in Sulfide-Based All-Solid-State Lithium Batteries: A Void Formation Mechanism, ACS Appl. Energy Mater., 3, 5472-5478 (2020).   DOI
3 Z. Spitalsky, C. A. Krontiras, S. N. Georga, and C. Galiotis, Effect of Oxidation Treatment of Multiwalled Carbon Nanotubes on the Mechanical and Electrical Properties of Their Epoxy Composites, Compos. Part A Appl. Sci., 40, 778-783 (2009).   DOI
4 H. M. Albetran, Structural Characterization of Graphite Nanoplatelets Synthesized from Graphite Flakes, Preprints, 2020080325 (2020).
5 J. Islam, H. Shao, M. M. R. Badal, K. M. Razeeb, and M. Jamal, Pencil Graphite as Electrode Platform for Free Chlorine Sensors and Energy Storage Devices, PloS one, 16, e0248142 (2021).   DOI
6 V. Watson, Y. Yeboah, M. Weatherspoon, J. Zheng, and E. E. Kalu, Preparation of Encapsulated Sn-Cu@Graphite Composite Anode Materials for Lithium-Ion Batteries, Int. J. Electrochem. Sci., 13, 7968-7988 (2018).
7 Y. Seino, K. Takada, B.-C. Kim, L. Zhang, N. Ohta, H. Wada, M. Osada, and T. Sasaki, Synthesis of Phosphorous Sulfide Solid Electrolyte and All-Solid-State Lithium Batteries with Graphite Electrode, Solid State Ion., 176, 2389-2393 (2005).   DOI
8 G. Maresca, A. Tsurumaki, N. Suzuki, T. Tsujimura, Y. Aihara, and M. Assunta Navarra, Improvement of Graphite Interfacial Stability in All-Solid-State Cells Adopting Sulfide Glassy Electrolytes, ChemElectroChem, 8, 689-696 (2021).   DOI
9 J. H. Choi, J. Lee, S. M. Moon, Y.-T. Kim, H. Park, and C. Y. Lee, A Low-Energy Electron Beam Does Not Damage Single-Walled Carbon Nanotubes and Graphene, J. Phys. Chem. Lett., 7, 4739-4743 (2016).   DOI
10 W. Zhou, Y. Ikuhara, W. Zhao, and J. Tang, A Transmission Electron Microscopy Study of Amorphization of Graphite by Mechanical Milling, Carbon, 33, 1177-1180 (1995).   DOI
11 S. W. Park, G. Oh, J. W. Park, Y. C. Ha, S. M. Lee, S. Y. Yoon, and B. G. Kim, Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid-State Lithium Batteries, Small, 15, 1900235 (2019).   DOI
12 R. Siburian, H. Sihotang, S. L. Raja, M. Supeno, and C. Simanjuntak, New Route to Synthesize of Graphene Nano Sheets, Orient. J. Chem., 34, 182-187 (2018).   DOI
13 J. Shin, W.-H. Ryu, K.-S. Park, and I.-D. Kim, Morphological Evolution of Carbon Nanofibers Encapsulating Snco Alloys and Its Effect on Growth of the Solid Electrolyte Interphase Layer, ACS Nano, 7, 7330-7341 (2013).   DOI
14 P. L. Moss, G. Au, E. J. Plichta, and J. P. Zheng, An Electrical Circuit for Modeling the Dynamic Response of Li-Ion Polymer Batteries, J. Electrochem. Soc., 155, A986 (2008).   DOI
15 E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, Improved Graphite Anode for Lithium-Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation, J. Electrochem. Soc., 143, L4 (1996).   DOI
16 J. Landesfeind, A. Eldiven, and H. A. Gasteiger, Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance, J. Electrochem. Soc., 165, A1122 (2018).   DOI
17 S. Ni, X. Lv, J. Zhang, J. Ma, X. Yang, and L. Zhang, The Electrochemical Performance of Lithium Vanadate/Natural Graphite Composite Material as Anode for Lithium Ion Batteries, Electrochim. Acta, 145, 327-334 (2014).   DOI
18 D. Bresser, K. Hosoi, D. Howell, H. Li, H. Zeisel, K. Amine, and S. Passerini, Perspectives of Automotive Battery R&D in China, Germany, Japan, and the USA, J. Power Sources, 382, 176-178 (2018).   DOI
19 D. Andre, H. Hain, P. Lamp, F. Maglia, and B. Stiaszny, Future High-Energy Density Anode Materials from an Automotive Application Perspective, J. Mater. Chem. A, 5, 17174-17198 (2017).   DOI
20 Y. Son, T. Lee, B. Wen, J. Ma, C. Jo, Y.-G. Cho, A. Boies, J. Cho, and M. De Volder, High Energy Density Anodes Using Hybrid Li Intercalation and Plating Mechanisms on Natural Graphite, Energy Environ. Sci., 13, 3723-3731 (2020).   DOI
21 W. Zhang, D. A. Weber, H. Weigand, T. Arlt, I. Manke, D. Schro der, R. Koerver, T. Leichtweiss, P. Hartmann, and W. G. Zeier, Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries, ACS Appl. Mater. Interfaces, 9, 17835-17845 (2017).   DOI
22 F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Design of Composite Positive Electrode in All-Solid-State Secondary Batteries with Li2S-P2S5 Glass-Ceramic Electrolytes, J. Power Sources, 146, 711-714 (2005).   DOI
23 J. Janek and W. G. Zeier, A Solid Future for Battery Development, Nat. Energy, 1, 1-4 (2016).
24 J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, The Success Story of Graphite as a Lithium-Ion Anode Material-Fundamentals, Remaining Challenges, and Recent Developments Including Silicon (Oxide) Composites, Sustain. Energy Fuels, 4, 5387-5416 (2020).   DOI
25 T. Placke, V. Siozios, R. Schmitz, S. Lux, P. Bieker, C. Colle, H.-W. Meyer, S. Passerini, and M. Winter, Influence of Graphite Surface Modifications on the Ratio of Basal Plane to "Non-Basal Plane" Surface Area and on the Anode Performance in Lithium Ion Batteries, J. Power Sources, 200, 83-91 (2012).   DOI
26 J.-M. Tarascon and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 414, 359-367 (2001).   DOI
27 M. Armand, and J.-M. Tarascon. Building Better Batteries, Nature, 451, 652-657 (2008).   DOI