DOI QR코드

DOI QR Code

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei (Shenzhen Institute of Wuhan University of Technology) ;
  • Zhang, Gang (State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) ;
  • Zhang, Yiluo (State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology) ;
  • Cao, Shiyu (Shenzhen Institute of Wuhan University of Technology) ;
  • Li, Jun (Sinopec Shanghai Research Institute of Petrochemical Technology)
  • Received : 2022.02.21
  • Accepted : 2022.04.07
  • Published : 2022.08.28

Abstract

The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Keywords

Acknowledgement

This work is supported by the Guangdong Major Project of Basic and Applied Basic Research (2021B0301030001), Shenzhen Science and Technology Project (JCYJ20190809153405505), the National Natural Science Foundation of China (No. 51972246, and 51521001), the National Key Research and Development Program of China (2018YFB0905600), Fundamental Research Funds for the Central Universities in China and the "111" project (No. B13035).

References

  1. S. Bag, C. Zhou, P. J. Kim, V. G. Pol, V. Thangadurai, Energy Storage Mater. 2020, 24, 198-207. https://doi.org/10.1016/j.ensm.2019.08.019
  2. W. P. Wang, J. Zhang, J. Chou, Y. X. Yin, Y. You, S. Xin, Y. G. Guo, Adv. Energy Mater. 2020, 11(2), 2000791.
  3. I. Gracia, H. Ben Youcef, X. Judez, U. Oteo, H. Zhang, C. Li, L. M. Rodriguez-Martinez, M. Armand, J. Power Sources 2018, 390, 148-152. https://doi.org/10.1016/j.jpowsour.2018.04.052
  4. F. Han, T. Gao, Y. Zhu, K. J. Gaskell, C. Wang, Adv. Mater. 2015, 27(23), 3473-3483. https://doi.org/10.1002/adma.201500180
  5. B. Ding, J. Wang, Z. Fan, S. Chen, Q. Lin, X. Lu, H. Dou, A. Kumar Nanjundan, G. Yushin, X. Zhang, Y. Yamauchi, Mater. Today 2020, 40, 114-131. https://doi.org/10.1016/j.mattod.2020.05.020
  6. N. H. H. Phuc, K. Hikima, H. Muto, A. Matsuda, Crit. Rev. Solid State Mater. Sci. 2021, 1-26.
  7. Q. Shao, D. Guo, C. Wang, J. Chen, J. Alloys Compd. 2020, 842, 155790. https://doi.org/10.1016/j.jallcom.2020.155790
  8. C. Zhang, Y. Lin, Y. Zhu, Z. Zhang, J. Liu, RSC Adv. 2017, 7(31), 19231-19236. https://doi.org/10.1039/C7RA02174G
  9. A. Sakuda, Y. Sato, A. Hayashi, M. Tatsumisago, Energy Technol. 2019, 7(12), 1900077. https://doi.org/10.1002/ente.201900077
  10. Z. Zhou, Z. Wang, J. Ji, K. Fu, C. Cao, J. Yang, Y. Xue, C. Tang, Mater. Lett. 2020, 276, 128243. https://doi.org/10.1016/j.matlet.2020.128243
  11. F. Chen, Y. Zhang, Q. Hu, S. Cao, S. Song, X. Lu, Q. Shen, J. Solid State Chem. 2021, 301, 122341. https://doi.org/10.1016/j.jssc.2021.122341
  12. M. Nagao, A. Hayashi, M. Tatsumisago, Electrochim. Acta 2011, 56(17), 6055-6059. https://doi.org/10.1016/j.electacta.2011.04.084
  13. Y. Zhang, R. Chen, S. Wang, T. Liu, B. Xu, X. Zhang, X. Wang, Y. Shen, Y.-H. Lin, M. Li, L.-Z. Fan, L. Li, C.-W. Nan, Energy Storage Mater. 2020, 25, 145-153.
  14. Y. Zhang, T. Liu, Q. Zhang, X. Zhang, S. Wang, X. Wang, L. Li, L.-Z. Fan, C.-W. Nan, Y. Shen, J. Mater. Chem. A 2018, 6(46), 23345-23356. https://doi.org/10.1039/C8TA08420C
  15. L. Wang, X. Yin, C. Jin, C. Lai, G. Qu, G. W. Zheng, ACS Appl. Energy Mater. 2020, 3(12), 11540-11547.
  16. Q. Shao, Z.-S. Wu, J. Chen, Energy Storage Mater. 2019, 22, 284-310.
  17. W. Zha, F. Chen, D. Yang, Q. Shen, L. Zhang, J. Power Sources 2018, 397, 87-94. https://doi.org/10.1016/j.jpowsour.2018.07.005
  18. X. Xiang, Y. Liu, F. Chen, W. Yang, J. Yang, X. Ma, D. Chen, K. Su, Q. Shen, L. Zhang, J. Eur. Ceram. Soc. 2020, 40(8), 3065-3071. https://doi.org/10.1016/j.jeurceramsoc.2020.02.054
  19. L. Li, Y. Deng, G. Chen, J. Energy Chem. 2020, 50, 154-177. https://doi.org/10.1016/j.jechem.2020.03.017
  20. H. Chen, C. Wang, W. Dong, W. Lu, Z. Du, L. Chen, Nano. Lett. 2015, 15(1), 798-802. https://doi.org/10.1021/nl504963e