Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.614

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering  

Park, Jun-Seob (Department of Materials Science and Engineering, Chungnam National University)
Kim, Jong-Heon (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 614-618 More about this Journal
Abstract
As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.
Keywords
all-solid-state thin-film lithium-ion battery; $Li_7La_3Zr_2O_{12}$; $Li_4Ti_5O_{12}$; $Li_2O$; co-sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Nishi, J. Power Sources, 100, 101 (2001).   DOI
2 J. Schnell, T. Gunther, T. Knoche, C. Vieider, L. Kohler, A. Just, M. Keller, S. Passerini and G. Reinhart, J. Power Sources., 382, 160 (2018).   DOI
3 P. G. Balakrishnan, R. Ramesh and T. P. Kumar, J. Power Sources., 155, 401 (2006).   DOI
4 K. Takada, T. Inada, A. Kajiyama, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama and R. Kanno, Solid State Ionics, 158, 269 (2003).   DOI
5 S. Ohta, T. Kobayashi, J. Seki and T. Asaoka, J. Power Sources, 202, 332 (2012).   DOI
6 L. Li, S. Liu, Y. Gong, D. P. Wilkinson and J. Zhang, Nano Energy, 33, 363 (2017).   DOI
7 M. Duclot and J. L. Souquet, J. Power Sources, 97, 610 (2001)   DOI
8 C. F. Xiao, J. H. Kim, D. Choi, Y. C. Park, J. H. Kim, J. Park, Y. J. Kim and H. S. Kim, J. Alloys Compd., 801, 550 (2019).   DOI
9 H. Kim and N. Cho, Nanoscale Res. Lett., 7, 408 (2012).   DOI
10 I. Seo and S. W. Martin, Inorg. Chem., 50, 2143 (2011).   DOI
11 S. Lorger, R. Usiskin and J. Maier, J. Electrochem. Soc., 166, 2215 (2019).
12 F. Sen, Y. Karatas, M. Gulcan and M. Zahmakiran, RSC Adv., 4, 1526 (2014).   DOI
13 M. Armand and J. M. Tarascon, Nature, 451, 652 (2008).   DOI
14 C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke and W. Weppner, Inorg. Chem., 50, 1089 (2011).   DOI
15 D. J. Kalita, S. H. Lee, K. S. Lee, D. H. Ko and Y. S. Yoon, Solid State Ionics, 229, 14 (2012).   DOI
16 W. Li, J. R. Dahn and D. S. Wainwright, Science, 264, 5162 (1994).
17 F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L, Lu, J. Power Sources, 389, 198 (2018).   DOI
18 R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem., Int. Ed., 46, 7778 (2007).   DOI
19 M. A. Salih, A. Caglar, A.Kivrak and H. Kivrak, Nano-science Nanotechnology, 4, 132 (2017).
20 M. S. Dresselhaus and I. L. Thomas, Nature, 414, 332 (2001).   DOI
21 J. M. Tarascon and M. Armand, Nature, 414, 359 (2001).   DOI