• 제목/요약/키워드: All Solid-State

검색결과 397건 처리시간 0.03초

소셜미디어 분석을 통한 전고체 배터리 감성분석과 이슈 탐색 (Sentiment Analysis and Issue Mining on All-Solid-State Battery Using Social Media Data)

  • 이지연;이병희
    • 한국콘텐츠학회논문지
    • /
    • 제22권10호
    • /
    • pp.11-21
    • /
    • 2022
  • 전고체 배터리는 차세대 배터리의 유력 후보 중 하나로 특히 미래 전기차 산업을 이끌 핵심 부품으로 주목받고 있다. 본 연구에서는 글로벌 소셜미디어인 레딧(Reddit)의 전고체 배터리 관련 댓글 10,280건을 분석하여 전고체 배터리와 관련된 정책 이슈 및 대중의 관심사를 파악한다. 수집된 글로벌 데이터에 빈도분석, 연관규칙분석, 토픽모델링 등 텍스트마이닝 기법과 감성분석을 적용하여 세계적 동향을 읽고, 이를 우리 정부의 전고체 배터리 발전전략과 비교 및 관련 국가R&D의 정책적 방향을 제시하고자 한다. 분석 결과, 2016년부터 2021년까지의 전고체 배터리 이슈에 대한 전반적인 감성은 긍정이 50.5%, 부정이 39.5%로 긍정인 것으로 나타났다. 또한 세부 감성을 분석한 결과, 대중들은 전고체 배터리에 대해 신뢰와 기대를 가지고 있음과 동시에 해결되지 않은 기술적 문제들에 대한 두려움과 우려의 감정이 공존함을 알 수 있었다. 본 연구에서는 전고체 배터리와 관련된 핵심 이슈 도출을 위한 텍스트마이닝 분석 방법을 적용하였고, 정부 정책 분석을 바탕으로 한 하향식 접근방법과 대중의 인식을 분석하는 상향식 접근방법을 수용하여, 보다 포괄적인 동향 분석 방법을 제시하였다.

Sampling Methods for Quantification of Solid-state Phases in Powder Samples with Solid-state NMR Spectroscopy

  • Han, Oc-Hee;Kim, Sun-Ha;Ko, Tae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1077-1079
    • /
    • 2009
  • To minimize the variance in the quantification of solid-state phases in powder samples, gently placing polycrystalline samples one next to another directly in a sample holder is better than trying to mix them homogeneously prior to transferring to a sample holder. However, the solid-state cross polarization-magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy results demonstrated that it is essential in this sampling method to place all the samples in the location of consistent signal sensitivity. The same sampling method may be employed in other spectroscopic quantification techniques of solid-state phases if the method to limit the sample to the location with uniform signal sensitivity in the sample holder is adapted to each technique.

Efficient cell design and fabrication of concentration-gradient composite electrodes for high-power and high-energy-density all-solid-state batteries

  • Kim, Ju Young;Kim, Jumi;Kang, Seok Hun;Shin, Dong Ok;Lee, Myeong Ju;Oh, Jimin;Lee, Young-Gi;Kim, Kwang Man
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.129-137
    • /
    • 2020
  • All-solid-state batteries are promising energy storage devices in which high-energy-density and superior safety can be obtained by efficient cell design and the use of nonflammable solid electrolytes, respectively. This paper presents a systematic study of experimental factors that affect the electrochemical performance of all-solid-state batteries. The morphological changes in composite electrodes fabricated using different mixing speeds are carefully observed, and the corresponding electrochemical performances are evaluated in symmetric cell and half-cell configurations. We also investigate the effect of the composite electrode thickness at different charge/discharge rates for the realization of all-solid-state batteries with high-energy-density. The results of this investigation confirm a consistent relationship between the cell capacity and the ionic resistance within the composite electrodes. Finally, a concentration-gradient composite electrode design is presented for enhanced power density in thick composite electrodes; it provides a promising route to improving the cell performance simply by composite electrode design.

고체전해질과 양극의 계면 열화 반응 (Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries)

  • 김재헌
    • Corrosion Science and Technology
    • /
    • 제23권4호
    • /
    • pp.334-342
    • /
    • 2024
  • The need for efficient and sustainable energy storage solutions has emerged due to a rapidly increasing energy demand and growing concerns about environmental issues. Among various energy storage methods, lithium secondary batteries are widely used in a variety of electronic devices such as smartphones, laptops, electric vehicles, and large-scale power storage systems due to their high energy density, long lifespan, and cost competitiveness. Recently, all-solid-state batteries (ASSBs) have attracted great attention because they can reduce the risk of fire associated with liquid electrolytes. Additionally, using high-capacity alternative anodes and cathodes in ASSBs can enhance energy density. However, ASSBs that use solid electrolytes experience a degradation in their electrochemical performances due to resistance at solid-solid interfaces. These interfaces can also result in poor physical contact and the presence of products formed from chemical and electrochemical reactions. Solving this interface problem is a critical issue for the commercialization of ASSBs. This review summarizes interfacial reactions between the cathode and solid electrolyte, along with research aimed at improving these interactions. Future development directions in this field are also discussed.

리튬금속과 고체전해질의 계면 반응 (Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries)

  • 김재헌
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.287-296
    • /
    • 2023
  • Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.

기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향 (The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery)

  • 김종헌;소승범;고광모;이경진;김현석
    • 한국전기전자재료학회논문지
    • /
    • 제32권6호
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질 (PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries)

  • 신소현;김성훈;조용현;안욱
    • 전기화학회지
    • /
    • 제25권3호
    • /
    • pp.105-112
    • /
    • 2022
  • 전고체전지의 상용화를 위해서는 상온에서 작동이 가능한 고체전해질 개발이 필수적이며 이온전도도가 높은 물질을 채택하여 전고체전지를 제조해야 한다. 따라서, 기존의 옥사이드 계열의 고체의 이온전도도를 높이기 위하여 이종원소가 도핑된 Li7La3Zr2O12 (LLZO)를 필러소재(Al, Nb-LLZO)로 사용하였으며, 상온에서 작동이 가능하도록 Poly(ethylene oxide)/Poly(propylene carbonate) (PEO/PPC) 기반의 가넷형 무기계 고체고분자 전해질을 제조하였다. 이원금속 원소를 도핑한 가넷형 무기계 필러와 PEO/PPC (1:1 비율로 섞인) 고분자를 1:2.4의 비율로 균일하게 교반하여 전해질을 합성해 상온과 60 ℃에서 전고체 전지의 전기학적 성능을 분석하였다. 제조한 복합 전해질은 이원금속의 도핑으로 인하여 이온전도도가 향상되었으며, PEO 단독으로 사용하는 전해질보다 PPC를 1:1로 첨가하였을 때 이온전도도 향상을 도와 60 ℃ 뿐만 아니라 상온에서 전고체 전지의 용량과 용량 유지율이 개선되었음을 확인하였다.

전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향 (Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes)

  • 윤정명;박철민
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Part I Advantages re Applications of Slab type YAG Laser PartII R&D status of All Solid-State Laser in JAPAN

  • Iehisa, Nobuaki
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 1998년도 추계학술발표대회 초록개요집
    • /
    • pp.0-0
    • /
    • 1998
  • -Part I- As market needs become more various, the production of smaller quantities of a wider variety of products becomes increasingly important. In addition, in order to meet demands for more efficient production, long-term unmanned factory operation is prevailing at a remarkable pace. Within this context, laser machines are gaining increasing popularity for use in applications such as cutting and welding metallic and ceramic materials. FANUC supplies four models of $CO_2$ laser oscillators with laser power ranging from 1.5㎾ to 6㎾ on an OEM basis to machine tool builders. However, FANUC has been requested to produce laser oscillators that allow more compact and lower-cost laser machines to be built. To meet such demands, FANUC has developed six models of Slab type YAG laser oscillators with output power ranging from 150W to 2㎾. These oscillators are designed mainly fur cutting and welding sheet metals. The oscillator has an exceptionally superior laser beam quality compared to conventional YAG laser oscillators, thus providing significantly improved machining capability. In addition, the laser beam of the oscillator can be efficiently transmitted through quartz optical fibers, enabling laser machines to be simplified and made more compact. This paper introduces the features of FANUC’s developed Slab type YAG laser oscillators and their applications. - Part II - All-solid-state lasers employing laser diodes (LD) as a source of pumping solid-state laser feature high efficiency, compactness, and high reliability. Thus, they are expected to provide a new generation of processing tools in various fields, especially in automobile and aircraft industries where great hopes are being placed on laser welding technology for steel plates and aluminum materials for which a significant growth in demand is expected. Also, in power plants, it is hoped that reliability and safety will be improved by using the laser welding technology. As in the above, the advent of high-power all-solid-state lasers may not only bring a great technological innovation to existing industry, but also create new industry. This is the background for this project, which has set its sights on the development of high-power, all-solid-state lasers with an average output of over 10㎾, an oscillation efficiency of over 20%, and a laser head volume of below 0.05㎥. FANUC Ltd. is responsible for the research and development of slab type lasers, and TOSHIBA Corp. far rod type lasers. By pumping slab type Nd: YAG crystal and by using quasi-continuous wave (QCW) type LD stacks, FANUC has already obtained an average output power of 1.7㎾, an optical conversion efficiency of 42%, and an electro-optical conversion efficiency of 16%. These conversion efficiencies are the best results the world has ever seen in the field of high-power all-solid-state lasers. TOSHIBA Corp. has also obtained an output power of 1.2㎾, an optical conversion efficiency of 30%, and an electro-optical conversion efficiency of 12%, by pumping the rod type Nd: YAG crystal by continuous wave (CW) type LD stacks. The laser power achieved by TOSHIBA Corp. is also a new world record in the field of rod type all-solid-state lasers. This report provides details of the above results and some information on future development plans.

  • PDF

Classification of Gravitational Waves from Black Hole-Neutron Star Mergers with Machine Learning

  • Nurzhan Ussipov;Zeinulla Zhanabaev;Almat, Akhmetali;Marat Zaidyn;Dana Turlykozhayeva;Aigerim Akniyazova;Timur Namazbayev
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권3호
    • /
    • pp.149-158
    • /
    • 2024
  • This study developed a machine learning-based methodology to classify gravitational wave (GW) signals from black hol-eneutron star (BH-NS) mergers by combining convolutional neural network (CNN) with conditional information for feature extraction. The model was trained and validated on a dataset of simulated GW signals injected to Gaussian noise to mimic real world signals. We considered all three types of merger: binary black hole (BBH), binary neutron star (BNS) and neutron starblack hole (NSBH). We achieved up to 96% correct classification of GW signals sources. Incorporating our novel conditional information approach improved classification accuracy by 10% compared to standard time series training. Additionally, to show the effectiveness of our method, we tested the model with real GW data from the Gravitational Wave Transient Catalog (GWTC-3) and successfully classified ~90% of signals. These results are an important step towards low-latency real-time GW detection.