DOI QR코드

DOI QR Code

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries

상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질

  • Shin, Sohyeon (Department of Energy Systems Engineering, Soon Chun Hyang University) ;
  • Kim, Sunghoon (Department of Energy Systems Engineering, Soon Chun Hyang University) ;
  • Cho, Younghyun (Department of Energy Systems Engineering, Soon Chun Hyang University) ;
  • Ahn, Wook (Department of Energy Systems Engineering, Soon Chun Hyang University)
  • 신소현 (순천향대학교에너지시스템학과) ;
  • 김성훈 (순천향대학교에너지시스템학과) ;
  • 조용현 (순천향대학교에너지시스템학과) ;
  • 안욱 (순천향대학교에너지시스템학과)
  • Received : 2022.04.28
  • Accepted : 2022.06.22
  • Published : 2022.08.31

Abstract

For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

전고체전지의 상용화를 위해서는 상온에서 작동이 가능한 고체전해질 개발이 필수적이며 이온전도도가 높은 물질을 채택하여 전고체전지를 제조해야 한다. 따라서, 기존의 옥사이드 계열의 고체의 이온전도도를 높이기 위하여 이종원소가 도핑된 Li7La3Zr2O12 (LLZO)를 필러소재(Al, Nb-LLZO)로 사용하였으며, 상온에서 작동이 가능하도록 Poly(ethylene oxide)/Poly(propylene carbonate) (PEO/PPC) 기반의 가넷형 무기계 고체고분자 전해질을 제조하였다. 이원금속 원소를 도핑한 가넷형 무기계 필러와 PEO/PPC (1:1 비율로 섞인) 고분자를 1:2.4의 비율로 균일하게 교반하여 전해질을 합성해 상온과 60 ℃에서 전고체 전지의 전기학적 성능을 분석하였다. 제조한 복합 전해질은 이원금속의 도핑으로 인하여 이온전도도가 향상되었으며, PEO 단독으로 사용하는 전해질보다 PPC를 1:1로 첨가하였을 때 이온전도도 향상을 도와 60 ℃ 뿐만 아니라 상온에서 전고체 전지의 용량과 용량 유지율이 개선되었음을 확인하였다.

Keywords

Acknowledgement

This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004), and also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1C1C1010493).

References

  1. F. A. G. Daza, M. R. Bonilla, A. Llordes, J. Carrasco, and E. Akhmatskaya, Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes, ACS Appl.Mater. Interfaces, 11, 753 (2018).
  2. K. Heo, J. Im, J.-S. Lee, J. Jo, S. Kim, J. Kim, and J. Lim, High-rate blended cathode with mixed morphology for all-solid-state Li-ion batteries, J. Electrochem. Sci. Technol., 11, 282 (2020). https://doi.org/10.33961/jecst.2019.00661
  3. B.-H. Choi, H. T. Jun, E. J. Yi and H. Hwang, Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y glass electrolytes, J. Korean Electrochem. Soc., 24, 52 (2021).
  4. C.-L. Tsai, Q. Ma, C. Dellen, S. Lobe, F. Vondahlen, A. Windmuller, D. Gruner, H. Zheng, S. Uhlenbruck, and M. Finsterbusch, A garnet structure-based all-solid-state Li battery without interface modification: Resolving incompatibility issues on positive electrodes, Sustain. Energy Fuels, 3, 280 (2019). https://doi.org/10.1039/C8SE00436F
  5. S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, and Q. H. Yang, Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries, Adv. Sci., 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088
  6. X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, and H.-W. Lee, Solid-state lithium-sulfur batteries operated at 37℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer, Nano Lett., 17(5), 2967 (2017). https://doi.org/10.1021/acs.nanolett.7b00221
  7. Z. Xue, D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19218 (2015). https://doi.org/10.1039/C5TA03471J
  8. V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43, 4714 (2014). https://doi.org/10.1039/c4cs00020j
  9. C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui, J. Li, S. Dong, X. Zhou, and G. Cui, Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery, Adv. Sci., 6(22), 1901036 (2019). https://doi.org/10.1002/advs.201901036
  10. J. S. Han, H. Yu, and J.-K. Kim, Electrochemical performance of rechargeable lithium battery using hybrid solid electrolyte, J. Korean Electrochem. Soc., 24(4), 100 (2021).
  11. J. Lee, K. Heo, Y.-W. Song, D. Hwang, M.-Y. Kim, H. Jeong, D.-C. Shin, and J. Lim, Degradation of all-solid-state lithium-sulfur batteries with PEO-based composite electrolyte, J. Electrochem. Sci. Technol., 13(2), 199 (2022). https://doi.org/10.33961/jecst.2021.00864
  12. W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, and M. Armand, Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes, J. Phys.: Condens. Matter, 7, 6823 (1995). https://doi.org/10.1088/0953-8984/7/34/007
  13. P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, and X. Liu, Review on polymer-based composite electrolytes for lithium batteries, Front. Chem., 7, 522 (2019). https://doi.org/10.3389/fchem.2019.00522
  14. J. Kim, J. Oh, J. Y. Kim, Y.-G. Lee, and K. M. Kim, Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries, J. Korean Electrochem. Soc., 22(3), 87 (2019).
  15. L. Zhu, J. Li, Y. Jia, P. Zhu, M. Jing, S. Yao, X. Shen, S. Li, and F. Tu, Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte, Int. J. Energy Res., 44(13), 10168 (2020). https://doi.org/10.1002/er.5632
  16. L. Zhu, P. Zhu, S. Yao, X. Shen, and F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery, Int. J. Energy Res., 43(9), 4854 (2019). https://doi.org/10.1002/er.4638
  17. D. O. Shin, K. Oh, K. M. Kim, K.-Y. Park, B. Lee, Y.-G. Lee, and K. Kang, Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction, Sci. Rep., 5, 18053 (2015). https://doi.org/10.1038/srep18053
  18. L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets, Chem. Mater., 27(11), 4040 (2015). https://doi.org/10.1021/acs.chemmater.5b01023
  19. M. J. Lee, J. Y. Kim, J. Oh, J. M. Kim, K. M. Kim, Y.-G. Lee, and D. O. Shin, Study on electrochemical performances of PEO-based composite electrolyte by contents of oxide solid electrolyte, J. Korean Electrochem. Soc., 21(4), 80 (2018).
  20. V. T. Luu, Q. H. Nguyen, M. G. Park, H. L. Nguyen, M.-H. Seo, S.-K. Jeong, N. Cho, Y.-W. Lee, Y. Cho, S. N. Lim, Y.-S. Jun, and W. Ahn, Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery, J. Mater. Res. Technol., 15, 5849 (2021). https://doi.org/10.1016/j.jmrt.2021.11.055
  21. Q. H. Nguyen, V. T. Luu, H. L. Nguyen, Y.-W. Lee, Y. Cho, S. Y. Kim, Y.-S. Jun, and W. Ahn, Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries, Front. Chem., 8, 619832 (2021). https://doi.org/10.3389/fchem.2020.619832
  22. K.-C. Kim and S.-W. Ryu, Synthesis of self-doped poly(PEGMA-co-BF3LiMA) electrolytes and effect of PEGMA molecular weight on ionic conductivities, J. Korean Electrochem. Soc., 15(4), 230 (2012). https://doi.org/10.5229/JKES.2012.15.4.230
  23. K. Rhodes, R. Meisner, Y. Kim, N. Dudney, and C. Daniel, Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD, J. Electrochem. Soc., 158, A890 (2011). https://doi.org/10.1149/1.3596376