• Title/Summary/Keyword: AlN films

Search Result 495, Processing Time 0.025 seconds

Growth behavior of Ti-Al-V-N Films Prepared by Dc Reactive Magnetron Sputtering (DC Reactive Magnetron Sputtering법에 의한 Ti-Al-V-N 박막의 성장거동)

  • Sohn, Yong-Un;Chung, In-Wha;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.9 no.7
    • /
    • pp.688-694
    • /
    • 1999
  • Ti-6Al-4V-N films have been grown onto glass substrates by dc reactive magnetron sputtering from a Ti-6Al-4V-N alloy target at different nitrogen partial pressure, input powers and sputtering times. The influence of various sputtering conditions on structural properties of Ti-6Al-4V-N films was investigated by measuring their X-ray diffraction. The quaternary Ti-6Al-4V-N film is crystallizing in a face centered cubic TiN structure, the lattice parameter is smaller than the TiN parameter as titanium atoms of the TiN lattice are replaced by aluminum and vanadium atoms. The films show the (111) preferred orientation and the (111) peak intensity decreases as the nitrogen partial pressure is increased, but the intensity increases as the sputtering time is increased. The deposition rate and the grain size are alto related with the variation of various sputtering conditions.

  • PDF

Pressure Sensing Properties of Al1-xScxN Thin Films Sputtered at Room Temperature (상온에서 성막한 고감도의 Al1-xScxN 박막의 압력 감지 특성)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Lee, Young-Jin;Hong, Yeon-Woo;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.420-424
    • /
    • 2014
  • Aluminum-scandium nitride ($Al_{1-x}Sc_xN$) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 50% $N_2$/Ar. The effect of Sc-doping on the structure and piezoelectric properties of AlN films has been investigated using SEM, XRD, surface profiler and pressure-voltage measurements. The as-deposited AlN films showed polycrystalline phase, and the Sc-doped AlN film, the peak of AlN (002) plane and the crystallinity became very strong. With Sc-doping, the crystal size of AlN film was grown from ~20 nm to ~100 nm. The output signal voltage of AlN sensor showed a linear behavior between 15~65 mV, and output signal voltage of Sc-doped AlN sensor was increased over 7 times. The pressure-sensing sensitivity of AlN film was calculated about 10.6mV/MPa, and $Al_{0.88}Sc_{0.12}N$ film was calculated about 76 mV/MPa.

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Raman characteristics of polycrysta1line 3C-SiC thin films grown on AlN buffer layer (AlN 버퍼층위에 성장된 다결정 3C-SiC 박막의 라만 특성)

  • Lee, Yun-Myung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.93-93
    • /
    • 2008
  • This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar + $H_2$).The Raman spectra of SiC films deposited on AlN layer of before and after annealings were investigated according to the growth temperature of 3C-SiC. Two strong Raman peaks, which mean that poly 3C-SiC admixed with nanoparticle graphite, were measured in them. The biaxial stress of poly 3C-SiC/AlN was calculated as 896 MPa from the Raman shifts of 3C-SiC deposited at $1180^{\circ}C$ on AlN of after annealing.

  • PDF

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Growth of Epitaxial AlN Thin Films on Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법을 이용한 사파이어 기판 위 질화알루미늄 박막의 에피탁시 성장)

  • Lee, Hyo-Sung;Han, Seok-Kyu;Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Hong, Soon-Ku;Jeong, Myoung-Ho;Lee, Jeong-Yong;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.634-638
    • /
    • 2011
  • We report growth of epitaxial AlN thin films on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. To achieve two-dimensional growth the substrates were nitrided by nitrogen plasma prior to the AlN growth, which resulted in the formation of a two-dimensional single crystalline AlN layer. The formation of the two-dimensional AlN layer by the nitridation process was confirmed by the observation of streaky reflection high energy electron diffraction (RHEED) patterns. The growth of AlN thin films was performed on the nitrided AlN layer by changing the Al beam flux with the fixed nitrogen flux at 860$^{\circ}C$. The growth mode of AlN films was also affected by the beam flux. By increasing the Al beam flux, two-dimensional growth of AlN films was favored, and a very flat surface with a root mean square roughness of 0.196 nm (for the 2 ${\mu}m$ ${\times}$ 2 ${\mu}m$ area) was obtained. Interestingly, additional diffraction lines were observed for the two-dimensionally grown AlN films, which were probably caused by the Al adlayer, which was similar to a report of Ga adlayer in the two-dimensional growth of GaN. Al droplets were observed in the sample grown with a higher Al beam flux after cooling to room temperature, which resulted from the excessive Al flux.

Preparation the AlN thin films with the Al bottom electrode (Al 하부전극을 이용한 AlN 박막의 제작)

  • Kim, Geon-Hi;Keum, Min-Jong;Kim, Hyun-Woong;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.101-104
    • /
    • 2004
  • In this study AlN/Al thin films were prepared at various conditions, such as $N_2$ gas flow rate $[N_2/(N_2+Ar)]$ from 0.6 to 0.9, a substrate temperature ranging from room temperature to $300^{\circ}C$ and working pressure 1mTorr. We estimated crystallographic characteristics and c-axis preferred orientations of AlN/Al thin films as function of Al electrode surface roughfness. The optimal processing conditions for Al electrode were found at substrate temperature of $300^{\circ}C$, sputtering power of 100W and a working pressure of 2mTorr. In these conditions, we obtained the c-axis preferred orientation of $AlN/Al/SiO_2/Si$ thin film about 4 degree.

  • PDF

Precursor Process Designing to Synthesize Nano-sized Phosphors

  • Kim, Soo-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

The preferred orientation and morphology characteristics of AlN thin films prepared by RF power under Room Temperature process (저온공정을 이용한 AlN 박막의 우선배향성과 모폴로지에 관한 연구)

  • Oh, Su-Young;Lee, Tae-Yong;Kim, Eung-Kwon;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.313-314
    • /
    • 2007
  • AlN is used a wide variety of applications such as electroacoustic devices, blue diode and metal-insulator-semiconductor structures. AlN thin films were deposited on Si substrates by rf sputter technique with low temperature process. The orientation and morphology of AlN thin films at various power in the range from 150 to 300 w was studied. X-ray diffraction (XRD), full width at half-maximum (FWHM) and field emission scanning electron microscopy were employed to characterize the deposited films. The c-axis orientation along (002) Plane at experimental results was enhanced with the increasing of the rf power from 150 to 300 w and the surface morphology of the films showed a homogeneous and nano-sized microstructure.

  • PDF