• 제목/요약/키워드: AlN films

검색결과 495건 처리시간 0.029초

Magnetic Properties of Al-Co-N Thin Films Dispersed with Co Particles

  • Han, Chang-Suk
    • 열처리공학회지
    • /
    • 제21권1호
    • /
    • pp.3-9
    • /
    • 2008
  • Al-Co-N thin films, Al-Co-N/Al-N and Al-Co-N/Al-Co multilayers containing various amounts of Co content were deposited by using a two-facing targets type dc sputtering (TFTS) system. The films were also annealed successively and isothermally at different annealing temperatures. Irrespective of Co content and preparation methods, all the as-deposited films were observed non-magnetized. It was found that annealing conditions can control the magnetic and electrical properties as well as the microstructure of the films.

D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성 (High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering)

  • 최장현;이상래
    • 한국표면공학회지
    • /
    • 제25권5호
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

Syntheses and properties of Ti2AlN MAX-phase films

  • Zhang, Tengfei;Myoung, Hee-bok;Shin, Dong-woo;Kim, Kwang Ho
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.149-153
    • /
    • 2012
  • Ti2AlN MAX-phase films were synthesized through the post-annealing process of as-deposited Ti-Al-N films. Near amorphous or quasi-crystalline ternary Ti-Al-N films were deposited on Si and Al2O3 substrates by sputtering a Ti2AlN MAX-phase target at room temperature, 300 ℃ and 450 ℃, respectively. A vacuum annealing of those films at 800 ℃ for 1 hour changed those films to crystalline Ti2AlN MAX-phase. The polycrystalline Ti2AlN MAX-phase films exhibited very excellent oxidation resistance due to its characteristics microstructure (nanolaminates), which has potential applications for high-temperature protective coatings. The microstructure and composition of Ti2AlN MAX-phase films were investigated using with a variety of characterization tools.

펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과 (Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교 (A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique)

  • 윤석영;이윤복;김광호
    • 한국표면공학회지
    • /
    • 제35권4호
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

A Study on the Fabrication and Structural Evaluation of AlN Thin Films

  • Han, Seung-Oh;Han, Chang-Suk
    • 열처리공학회지
    • /
    • 제23권2호
    • /
    • pp.69-74
    • /
    • 2010
  • AlN thin films were deposited by using a two-facing-targets type sputtering system (TFTS), and their deposition characteristics, microstructure and texture were investigated. Total gas pressure was kept constant at 0.4 Pa and the partial pressures of nitrogen, $PN_2$ (($N_2$ pressure)/($Ar+N_2$ pressure)) varied from 0 to 0.4 Pa. The texture of the film cross-sections and surface morphology were observed by field emission scanning electron microscope (FE-SEM). The crystallographic orientation of the films were analyzed by X-ray diffraction (XRD). Deposition of AlN film depends on $N_2$ partial pressure. The best preferred oriented AlN thin films can be deposited at a nitrogen partial pressure of $PN_2$ = 0.52. As-deposited AlN films show preferred orientation and columnar structure, and the grAlN size of AlN films increases with increasing sputtering current.

TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구 (A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System)

  • 한창석
    • 열처리공학회지
    • /
    • 제18권5호
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성 (Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

CrAlN과 CrZrN의 산화 (Oxidation of CrAlN and CrZrN Films)

  • 김민정;김슬기;이상율;이동복
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.33-35
    • /
    • 2011
  • Films of CrAlN and CrZrN were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors were investigated. CrAlN films consisted of dense, polycrystalline CrN and AlN fine columns. The formed oxides consisted primarily of crystalline $Cr_2O_3$ incorporated with $Al_2O_3$. The oxide layers were thin and compact so as to make CrAlN films more protective than CrN films. In case of CrZrN films, Zr atoms were dissolved in the CrN phase. Zr atoms advantageously refined the columnar structure, reduced the surface roughness, and increased the micro-hardness. However, the addition of Zr did not increased oxidation resistance, mainly because Zr was not a protective element. All the deposited films displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on their surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one, whereas the CrN film oxidized to $Cr_2O_3$.

  • PDF

다양한 증착변수에 따른 AlN 박막의 물성 및 SAW 소자의 특성 분석 (Effects of deposition conditions on properties of AlN thin films and characterization of AlN SAW devices)

  • 정준필;이명호;이진복;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1479-1481
    • /
    • 2002
  • AlN thin films were deposited on Si(100) and $SiO_2$/Si substrates using R.F. magnetron sputtering system. The effect of various deposition conditions on the crystal orientation of AlN films was investigated to obtain a highly (002)-oriented films. SAW filters were fabricated using AlN films with various thicknesses and their frequency response characterizations were measured. Experimental results showed that the (002)-orientation and surface roughness of AlN films played a crucial role of determining the frequency response of AlN SAW devices.

  • PDF