• Title/Summary/Keyword: Al-doped ZnO (AZO)

Search Result 158, Processing Time 0.034 seconds

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Effect of Thickness on the Properties of Al Doped ZnO Thin Films Deposited by Using PLD (Al이 도핑된 ZnO 소재의 PLD 박막 두께 변화가 특성에 미치는 영향)

  • Pin, Min-Wook;Bae, Ki-Ryeol;Park, Mi-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.568-573
    • /
    • 2011
  • AZO (Al doped ZnO) thin films were deposited on the quartz substrates with thickness variation from 25 to 300 nm by using PLD (pulsed laser deposition). XRD (x-ray diffractometer), SPM (scanning probe microscopy), Hall effect measurement and uv-visible spectrophotometer were employed to investigate the structural, morphological, electrical and optical properties of the thin films. XRD results demonstrated that films were preferrentially oriented along the c-axis and crystallinity of film was improved with increase of film thickness. As for the surface morphologies, the mean diameter and root mean square of grains were increased as the film thickness was increased. When the film thickness was 200 nm, the lowest resistivity of $4.25{\times}10^{-4}\;{\Omega}cm$ obtained with carrier concentration of $6.84{\times}10^{20}\;cm^{-3}$ and mobility of $21.4\;cm^2/V{\cdot}S$. All samples showed more than 80% of transmittance in the visible range. Upon these results, it is found that the samples thickness can affect their structural, morphological, optical and electrical properties. This study suggests that the resistivity can be improved by controlling film thickness.

A study of Physically Implanted Surface Islands by direct Nd:YAG Laser Beam Irradiation

  • Oh, Chang-Heon;Cheon, Suyoung;Lim, Changjin;Lee, Jeongjun;Jeon, Jihyun;Kim, Kyoung-Kook;Chung, Chan-Moon;Cho, Soohaeng
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.66-69
    • /
    • 2017
  • Physically implanted surface islands of Nano Carbon Tube (NCT) and ${\alpha}-F_2O_3$ particles have been produced on Al-doped ZnO (AZO)/glass surfaces by simple and direct ND:YAG laser beam irradiation. Sheet resistance of the reconstructed surface increased by about 3.6% of over AZO. Minimal surface damage can be repaired by ND:YAG laser beam irradiation in conjunction with proper impurities. Implanted islands of NCT, which are considered to be a good conductive impurity, on AZO increased the sheet resistance by about 1.8%, while implanted islands of ${\alpha}-F_2O_3$, an insulating impurity, on AZO increased sheet resistance by about 129% compared with a laser beam treated AZO. This study provides insight regarding surface implantations of nanowires and micro-circuits, doping effects for semiconductors and optical devices, surface area and impurity effects for catalysis.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF

Electrical and optical properties of back reflecting layer with AZO-Ag bilayer structure on a glass substrate for thin film Si solar cell applications (박막 Si태양전지 응용을 위한 유리기판 위의 AZO-Ag 이중구조 배면전극의 전기광학적 특성)

  • Park, Jaecheol;Hong, ChangWoo;Choi, YoungSung;Lee, JongHo;Kim, TaeWon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.124.2-124.2
    • /
    • 2011
  • 현재 박막형 태양전지는 실리콘계가 주류를 이루고 있으며, 유리기판 또는 유연성 기판에 비정질 실리콘 박막을 형성시킨 태양전지와 실리콘 기판 양면에 태양전지를 형성하는 방법 등 효율을 극대화시킨 이종접합 태양전지 등이 연구되고 있다. 예컨대 밴드갭이 서로 다른 박막들 간의 이종접합을 이용한 tandem 구조 및 triple 구조의 Si 박막 태양전지의 경우 13%대 변환효율을 나타낸다고 보고된 바 있다. 본 연구에서는 비정질 Si 박막 태양전지 내 흡수층의 효율을 최대화하기 위하여 AZO/Ag 이중구조 박막의 특성에 관한 연구를 수행하고자 한다. combinatorial sputtering system을 이용하여 AZO/Ag 이중구조 박막을 제작하였으며 타겟으로는 4-inch target(Ag, 2wt% Al2O3 doped ZnO)이 사용되었다. 유리기판 상에 combinatorial sputter system으로 상온에서 제작된 Ag 박막의 두께는 25nm로 성장시켰으며 연속공정으로 AZO 박막을 제작하였고, AZO 박막은 100~500nm의 두께경사를 나타내었다. 이 때 유리기판상에 성장된 Ag/AZO 박막의 면저항은 약 $2{\Omega}/{\Box}$ 값을 나타내었다. 본 발표에서는 AZO/Ag 이중 구조 박막의 우수한 전기적 특성을 기반으로 표면 거칠기 및 반사도 특성 등에 관하여 추가적으로 토론한다.

  • PDF

Characteristic of AZO Thin Film Deposited by Facing Targets Sputtering with Magnetic Field Type (FTS장치의 자계 분포에 따라 제작된 AZO 박막의 특성)

  • Kim, Sangmo;Shin, Keon Yuep;Keum, Min jong;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • We investigated magnetic field, discharged voltage, and as-deposited film uniformity at facing targets sputtering (FTS) system with magnetic field type: i) concentrated and ii) distributed magnetic field type. And Al doped ZnO (AZO) films were prepared at two magnetic field type such as concentrated magnetic field type and distributed magnetic field type, respectively. Discharge voltage at the distribution type is lower than concentration type due to low magnetic flux (middle magnetic flux: Concentration 1200 G and Distribution 600 G). The films deposited at the distributed magnetic field were more uniform than concentration type. All of prepared AZO films had a resistivity of under $10^{-4}[{\Omega}{\cdot}cm]$ and a transmittance of more than 85 % in the visible range.

Effect of oxalic acid solution to optimize texturing of the front layer of thin film sloar cells

  • Park, Hyeong-Sik;Jang, Gyeong-Su;Jo, Jae-Hyeon;An, Si-Hyeon;Jang, Ju-Yeon;Song, Gyu-Wan;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.401-401
    • /
    • 2011
  • In this work, we deposited Al2O3doped ZnO (AZO) thin films by direct current (DC) magnetron sputtering method with a $40^{\circ}$ tilted target, for application in the front layer of thin film solar cell. Wet chemical etching behavior of AZO films was also investigated. In order to optimize textured AZO films, oxalic acid ($C_2H_2O_4$)has been used as wet etchant of AZO film. In this experiment we used 0.001% concentration of oxalic acid various etching time, that showed an anisotropy in etching texture of AZO films. Electrical resistivity, Hall mobility and carrier concentration measurements are performed by using the Hall measurement, that are $6{\times}10^{-4}{\Omega}cm$, $20{\sim}25cm^2/V-s$ and $4{\sim}6{\times}10^{20}$, respectively.

  • PDF

Influence of Annealing treatment on the properties of B doped ZnO:Al transparent conduction films (열처리 효과에 따른 AZOB 투명 전도막의 특성)

  • Lee, Jong-Hwan;Lee, Kyu-Il;Yu, Hyun-Kyu;Lee, Tae-Yong;Kang, Hyun-Il;Jeong, Kyu-Won;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.194-194
    • /
    • 2008
  • Boron doped ZnO:Al(AZOB) thin films were prepared on glass substrates by dc magnetron sputtering. Influence of the annealing treatment on the electrical and optical properties of AZOB thin films were investigated. The lowest resistivity of $1.6\times10^{-3}\Omega$-cm was obtained at an annealing temperature of $400^{\circ}C$. The average transmittance of the films is over 80% in the visible range. It was also shown that by introducing boron impurity into AZO system improve the uniformity, the resistivity, and thermal stability of ZnO-based conducting thin films.

  • PDF

듀얼 펄스 마그네트론 스퍼터링 방법으로 합성된 Al doped ZnO 박막의 특성 고찰

  • Jo, Seong-Hun;Kim, Seong-Il;Choe, Yun-Seok;Choe, In-Sik;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.192-192
    • /
    • 2010
  • Transparent Conductive Oxides (TCO) 박막은 지금 까지 산업 전반에 걸쳐 많이 응용되어 사용되어지는 박막 중에 하나이다. 그대표적인 산업은 디스플레이 산업 중 평면디스플레이 산업에서 투명 전극으로 사용하는 LCD 및 터치패널에 사용되는 전극으로 사용되어져 왔다. 현재에는 솔라 셀의 전극 및 기판으로서의 응용이 많이 연구되어지고 있다. 이와 같은, 산업에서 사용되는 투명전극 재료는 낮은 전기적 특성 및 애칭특성이 우수하고 높은 광 투과도를 필요로 하고 있으며, 이러한 특성을 모두 만족하며 가장 우수한 물성을 나타내는 물질이 (Indium Tin Oxide) film이다. 하지만 Indium의 고갈과 희소성에 따른 고가라는 점의 문제로 인해 대체재료로써 부상되고 있는 ZnO의 연구가 활발히 진행되고 있다. 본 연구에서는 투명 전도성 산화물인 ZnO박막과 Al이 도핑된 AZO박막을 저온공정이 가능한 대향 타겟식 스퍼터링 방법(FTS)을 이용하여 산소가스 분압과 Al타겟에 인가되는 Current에 따른 박막의 전기적, 광학적 특성을 파악하여 적용여부에 대해 조사하였다. ZnO박막의 결정성은 유입되는 산소가스의 유량에 따라 증가하며 일정 영역이상에서는 감소하였다. 산소가스 유량이 1.2 sccm일 때 가장 높은 결정성을 얻었다. 또한 산소가스 유량을 1.2 sccm으로 고정시킨 후 Al타겟에 인가되는 Current에 변화를 주었을 때 0.5A에서 가장 낮은 비저항을 얻었다. ZnO박막의 미세구조는 Xray-diffraction method를 이용하여 측정하였고, 산소 분압에 따른 표면조도 분석을 위해 AFM을 사용하였고 Zn와 Oxide bonding의 화학적 분석을 위해 XPS를 이용하여 분석하였다. 또한 전기적 특성은 Hall measurement, 광 투과도는 UV-VIS Spectrometer를 이용하였다.

  • PDF

Growth Characteristics of the ZnO Nanowires Prepared by Hydrothermal Synthesis Technique with Applied DC Bias (DC 바이어스를 인가하여 수열합성법으로 성장시킨 ZnO 나노와이어의 성장 특성)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.317-321
    • /
    • 2014
  • Hydrothermal synthesis technique could be carried out for growth of ZnO nanowires at relatively low process temperature, and it could be freely utilized with various substrates for fabrication process of functional electronic devices. However, it has also a demerit of relatively slow growth characteristics of the resulting ZnO nanowires. In this paper, an external DC bias of positive and negative 0.5 [V] was applied in the hydrothermal synthesis process for 2~8 [h] to prepare ZnO nanowires on a seed layer of AZO with high electrical conductivity. Growth characteristics of the synthesized ZnO nanowires were analyzed by FE-SEM. Material property of the grown ZnO nanowires was examined by PL analysis. The ZnO nanowires grown with positive bias revealed distinctively enhanced growth characteristics, and they showed a typical material property of ZnO.