Browse > Article
http://dx.doi.org/10.5757/ASCT.2017.26.4.66

A study of Physically Implanted Surface Islands by direct Nd:YAG Laser Beam Irradiation  

Oh, Chang-Heon (Department of Nano Physics, Gachon University)
Cheon, Suyoung (Department of Physics, Yonsei University)
Lim, Changjin (Department of Physics, Yonsei University)
Lee, Jeongjun (Department of Physics, Yonsei University)
Jeon, Jihyun (Department of Physics, Yonsei University)
Kim, Kyoung-Kook (Department of Nano-Optical Engineering, Korea Polytechnic University)
Chung, Chan-Moon (Department of Chemistry, Yonsei University)
Cho, Soohaeng (Department of Physics, Yonsei University)
Publication Information
Applied Science and Convergence Technology / v.26, no.4, 2017 , pp. 66-69 More about this Journal
Abstract
Physically implanted surface islands of Nano Carbon Tube (NCT) and ${\alpha}-F_2O_3$ particles have been produced on Al-doped ZnO (AZO)/glass surfaces by simple and direct ND:YAG laser beam irradiation. Sheet resistance of the reconstructed surface increased by about 3.6% of over AZO. Minimal surface damage can be repaired by ND:YAG laser beam irradiation in conjunction with proper impurities. Implanted islands of NCT, which are considered to be a good conductive impurity, on AZO increased the sheet resistance by about 1.8%, while implanted islands of ${\alpha}-F_2O_3$, an insulating impurity, on AZO increased sheet resistance by about 129% compared with a laser beam treated AZO. This study provides insight regarding surface implantations of nanowires and micro-circuits, doping effects for semiconductors and optical devices, surface area and impurity effects for catalysis.
Keywords
ND:YAG LASER; IMPLANT; AZO; Nano Carbon tube; ${\alpha}-F_2O_3$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. J. Moon, H. Kang, K. Knag, S -J Moon, and J. Y. Hwang, J. Electron. Mater. 44, 1192 (2015).   DOI
2 H. Kim, H. -H Park, and J. Kim, Mat. Sci. Semicon. Proc. 48, 79 (2016).   DOI
3 Q. Qi, Y. Liu, H. Zhang, J. Zhao, and Z. Huang, J. Alloy. Compd. 678, 375 (2016).   DOI
4 D. Murley, N. Young, M. Trainor, and D. McCulloch, IEEE Trans. Electron. Dev. 48, 1145 (2001).   DOI
5 I. Ozerov, M. Arab, V. I. Safarov, W. Marine, S. Giorgio, M. Sentis, and L.Nanai, Appl. Surf. Sci. 226, 242 (2004).   DOI
6 A. Medvid, P. Onufrijevs, and A. Mychko, Nano-scale Res. Lett 6, 582 (2011).   DOI
7 W. Lin, R. Ma, W. Shao, and B. Liu, Appl. Surf. Sci. 253, 5179 (2007).   DOI
8 R. Kumaravel, S. Bhuvaneswari, K. Ramamurthi, and V. Krishnakumar, Appl. Phys. A 109, 579 (2012).   DOI
9 A. K. Dubey and V. Yadava, J. Mater. Proc. Tech 195, 15 (2008).   DOI
10 F. Gonella, Nucl. Instr. and Meth. in Phys. Res. B 166, 831 (2000).
11 Y. Q. Wang, M. Curry, E. Tavenner, N. Dobson, and R. E. Giedd, Nucl. Instr. and Meth. in Phys. Res. B 219, 798 (2004).
12 H. Yu, M. Kim, Y. Kim, J. Lee, K. -K. Kim, S. -J. Choi, and S. Cho, Electron. Mater. Lett 10, 2 (2014).
13 I. Volintiru, M. Creatore, and B. J. Kniknie, J. Appl, Phys 102, 043709 (2007).   DOI
14 T. Minami, Thin Solid Films 516, 1314 (2008).   DOI
15 G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iuliano, T. Moskalewicz, and P. Mengucci, Mater. Sci. Eng. C 48, 263 (2015).   DOI
16 H. Sankur and J. T. Cheung, Appl. Phys. A 47, 271 (1988).   DOI
17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, and B. H. Hong, Nature 357, 706 (2009).