• Title/Summary/Keyword: Air-tightness test

Search Result 31, Processing Time 0.024 seconds

The Air Leakage Characteristics and Airtightness Performance of a Newly Built Apartment (신축 공동주택의 누기특성 및 기밀성능 분석에 관한 연구)

  • Lee, Yun Gyu;Shin, Cheol Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.606-611
    • /
    • 2013
  • In responding to the recent framework convention on climate change, and the rise of the need for energy efficient buildings, such as Zero Energy Buildings (ZEB), domestic insulation standards and energy conservation regulations are being reinforced, to prevent heat loss. Accordingly, the Ministry of Land, Infrastructure and Transport have made amendments in Chapter 21 "Enforcement regulations for building facilities standards etc.", and Chapter 22 "Energy conservation standard", to reflect these changes. To effectively implement these regulations, it is required to propose air-tightness test methods, and establish air-tightness standards, based on the air leakage characteristics of domestic apartment housings. This research has been done primarily to collect basic technical data, to provide guidance for the establishment of domestic air-tightness standards for new apartment housing, through studying air-tightness test methods, field measurement on air-tightness of new apartment housings, and air leakage characteristics of major developed countries.

Developing the Construction Guideline for ZEB Based on Air-tightness of Public Buildings in Korea (국내 비주거용 건물의 기밀성능 측정 결과를 통한 기밀 시공 가이드라인 개발)

  • Bae, Minjung;Choi, Gyeongseok
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.69-74
    • /
    • 2020
  • Since the design Standard for Energy Conservation in Building was implemented in 2008 for the first time, building elements such as window and door should satisfy the minimum criteria to apply for a building. Though its regulation does not cover the whole building yet, recent demand to reduce energy consumption in building sector grows rapidly year by year and also draws a lot of interest to ensure the whole building level. For example, a Zero energy building, one of low-energy buildings, requires a customized solution to resolve the air leakage issue to meet the standards in achieving the high level of air tightness. In this study, six non-residential buildings were tested by fan pressurization method to observe the air tightness of whole building to suggest the construction guideline for air tightness of low-energy building. Five out of six tested buildings showed 0.27 to 1.16 h-1 of number of air changes except one community center. These buildings were carefully constructed not only for building planning but also for parts where there was a concern of air leakage, thereby securing high levels of air-tightness. The construction skills were developed as a checklist to manage and supervise the construction site. It is our suggestion to use this checklist at construction sites for ZEB with the high level of air-tightness.

An Experimental Test for Air-tightness Performance Evaluation of Cracked Concrete Vacuum Tube Structures (콘크리트 진공튜브의 균열 발생에 따른 기밀성능 평가 실험)

  • Park, Joonam;Park, Hyeong-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.377-385
    • /
    • 2018
  • Super-speed vacuum tube system, where the air resistance is minimized to obtain high speed of the vehicle, is considered to be a viable alternative transportation system. Air-tightness is one of the most important design requirements of the system, because the internal pressure of the system needs to be maintained significantly lower than the atmospheric pressure. This study performed an experimental test, where a series of concrete tube specimens were applied by external loads to induce cracks and the effective air-permeability of the cracked tube structures were measured. The test results indicates that the information on the length and the width of the load-induced cracks are not enough to anticipate the system air-tightness, whereas the load-induced displacement has higher correlation with the systems air-tightness. Based on these results, a direction of future research for effect of the load-induced cracks on the system air-tightness is suggested.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis (초고속 열차 시스템을 위한 튜브 구조물의 기밀성 평가 : II. 시스템 실험 및 파라메터 해석)

  • Park, Joo-Nam;Kim, Lee-Hyeon;Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.151-159
    • /
    • 2011
  • This study performed an experimental study for air-tightness performance evaluation of concrete tube structures with joints. The test specimens consist of a continuous concrete tube, a concrete tube with a joint in the middle, and a segmented concrete tube. The test is performed in such a way that the inner pressure of the tube is dropped down to 0.1atm and the increase of the pressure is monitored with time. An equivalent air permeability is then calculated based on the test results. The results show that, as expected, a structure with more joints or bonds tends to be less air-tight. A sensitivity study shows that the system air-tightness performance level becomes higher as either the diameter or the thickness of the tube increases. Moreover, the increase in the diameter or the thickness of the tube makes an effort to enhance the air-tightness more effective.

Analyzing the air tightness of public housing through a blower door test (Blower door test를 통한 공공행복주택의 침기율 분석)

  • Kim, Jae-Hee;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.167-168
    • /
    • 2023
  • The government has established a zero-energy roadmap in accordance with its 2050 carbon neutrality strategy, and from 2023 onwards, residential buildings with 30 generations or more must be constructed as zero-energy structures. In response to this, measures for energy conservation through enhanced building tightness are being developed. The LH (Land and Housing Corporation) aims to achieve the first-stage building tightness performance targets by 2022 in preparation for this. Currently, South Korea has the "KS L ISO9972 - Building Tightness - Measuring the airtightness of buildings by the fan pressurization method" as the method for measuring building tightness, which was established in 2006 and revised in 2016. In practice, the airtightness is measured using the Blower Door Test method, and it is expressed as ACH50 (the number of air changes per hour at a pressure difference of 50 Pa between the indoor and outdoor environments). This study aims to measure and analyze the airtightness of Happy Homes constructed from 2020 to 2022, categorized by building type.

  • PDF

Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction (고기밀 고단열 주택의 기밀성능에 관한 실험적 연구)

  • Shin, U-Cheul;Yoon, Jong-Ho;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

A Study on the Development of Lightweight Wall for Sound Transmission Loss and Field Test Results of the Dry-Wall System (차음성능이 향상된 경량벽체 개발 및 성능평가 연구)

  • 이병권;배상환;홍천화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.699-704
    • /
    • 2004
  • As being inconvenient to apply reinforced concrete structure to high-rise buildings, it is applied steel structured system. Therefore light-weight wall systems are applied as partition wall to reduce the self-load of the building. But, the required performances of a light-weight wall are not evaluated systematically. As a field survey result, partition walls of house-to-house were not showed their respected performances, so the dwellers are feel so worse the quality of the whole building. In steel-structured high-rise buildings especially, occupant's dissatisfaction concerned indoor noise was high because curtain wall systems having a high air-tight performance isolate the outdoor noise making masking effect. Therefore wall systems which have high performances of sound insulation and air-tightness are required in high-rise buildings. As a result, a new drywall system was presented and the performance was verified with field test.

  • PDF

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test (초고속 튜브철도 시스템을 위한 튜브 구조물의 기밀성 평가 : I. 해석모델 수립 및 재료 기밀성)

  • Park, Joo-Nam;Nam, Seong-Won;Kim, Lee-Hyeon;Yeo, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • This paper presents a preliminary study for air-tightness evaluation of vacuum tube structures for super-speed tube railway systems. The formula for flow rate of the air caused by the pressure difference of the inside and outside of the tube structure is derived based on Darcy's law. A test is then performed to measure the air-permeability of concrete with various compressive strengths, the result of which is used for analytical simulation of the air intrusion for a tube structure with a preliminarily defined section. It has been shown that concrete with the compressive strength of at least more than 50MPa is recommended for effective operation and maintenance of the vacuum pump systems, as the air-permeability of concrete is inversely proportional to the exponent of its compressive strength.

Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent (유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가)

  • Lee, Jin-Wook;Cho, Chang-hyun;Kim, Sung-Gye;Ko, Young-Gun;Kim, Dong-Ju
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • For hydrogen-vehicle applications (air pressure control valve housing, APCVH), an investigation was conducted to determine how micro-defects in a high- pressure die-casted Al alloy (industrial code: ALDC12) could be controlled by means of a post-treatment using an organic-based impregnation solution in order to improve the air- tightness of the die-casted Al sample. Two different impregnation solutions were proposed and its test results were compared to a imported product from Japan with respect to the processing variables used. A structural investigation of the components under study was conducted by means of computer tomography and 3D X-ray micro-CT. These observations revealed that the use of the impregnation treatment to seal micro-defects led to highly significant and beneficial changes which were attributed mainly to interconnections among inherent micro-pores. A leak test after impregnation revealed that the performance improvement rate of the die-casted Al sample was ~70% for INNO-01. Therefore, the developed impregnation solutions offer an effective strategy to control the micro-defects found in various vehicle parts via die-casting.