DOI QR코드

DOI QR Code

Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: II. System Test and Parametric Analysis

초고속 열차 시스템을 위한 튜브 구조물의 기밀성 평가 : II. 시스템 실험 및 파라메터 해석

  • 박주남 (한국철도기술연구원 철도구조연구실) ;
  • 김이현 (한국철도기술연구원 철도구조연구실) ;
  • 남성원 (한국철도기술연구원 철도환경연구실)
  • Received : 2010.12.17
  • Accepted : 2011.03.20
  • Published : 2011.04.26

Abstract

This study performed an experimental study for air-tightness performance evaluation of concrete tube structures with joints. The test specimens consist of a continuous concrete tube, a concrete tube with a joint in the middle, and a segmented concrete tube. The test is performed in such a way that the inner pressure of the tube is dropped down to 0.1atm and the increase of the pressure is monitored with time. An equivalent air permeability is then calculated based on the test results. The results show that, as expected, a structure with more joints or bonds tends to be less air-tight. A sensitivity study shows that the system air-tightness performance level becomes higher as either the diameter or the thickness of the tube increases. Moreover, the increase in the diameter or the thickness of the tube makes an effort to enhance the air-tightness more effective.

본 논문에서는 시공이음 및 세그먼트 연결부 등 불연속 구간을 포함하고 있는 튜브 구조물에 대한 기밀성 평가를 위해 실험에 기초한 연구를 수행하였다. 실제 진공튜브 시스템을 위해 적용 가능한 콘크리트 라이닝을 최대한 모사할 수 있도록 콘크리트 관 1개로 구성된 일체형 튜브(N1) 1기, 동 콘크리트 관 두 개를 연결시킨 연결식 튜브 시험체(N2) 1기, 그리고 콘크리트 세그먼트형 튜브(S) 1기 등 총 3기의 시험체를 제작하여 각 시험체에 대해 내부 기압을 0.1atm로 낮춘 후 시간에 따른 내부 기압의 변화를 측정하였다. 기밀성 실험 결과 얻어진 흐름 곡선으로부터 시스템의 등가 투기계수를 산출하였는데 이음부가 많을수록 시스템의 등가투기계수는 높아지는 경향을 보였다. 또한 실험 결과를 바탕으로 가정된 튜브 단면 변화에 따른 기밀성의 민감도를 해석적으로 분석하였는데 튜브 구조물의 두께 및 직경이 커질수록 시스템 기밀성이 더 향상될 뿐 아니라 기밀성 보강의 효과가 더욱 커진다는 것을 알 수 있었다.

Keywords

References

  1. J. Park, S-W. Nam, L-H. Kim, I, Yeo (2011) Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test, Journal of the Korean Society for Railway, 14(2), pp. 143-150. https://doi.org/10.7782/JKSR.2011.14.2.143
  2. Mehta, P. and Monteiro, P. (2005) Concrete: Microstructure, Properties, and Materials, McGraw-Hill.
  3. K-M, Chang (1998) Numerical Experiments on the Evaluation of Effective Permeability and Tunnel Excavation in the Three Dimensional Fracture Network Model, Tunnel & Underground, 8(4), pp. 275-286.
  4. A. Ziari, M.R. Kianoush, (2009) Investigation of flexural cracking and leakage in RC liquid containing structures, Engineering Structures, 31(5), pp. 1056-1067. https://doi.org/10.1016/j.engstruct.2008.12.019
  5. Y. Billard, G. Debicki, L. Coudert (2005) Leakage rate through a non-cracked concrete wall, comparison between two situations: Air pressure test and accident conditions, Nuclear engineering and design, 235(17-19), pp. 2109-2123. https://doi.org/10.1016/j.nucengdes.2005.05.028
  6. X.F. Song, J.F. Wei, T.SH. He (2009) A method to repair concrete leakage through cracks by synthesizing super-absorbent resin in situ, Construction & Building Materials, 23(1), pp. 386-391 https://doi.org/10.1016/j.conbuildmat.2007.11.009
  7. K. Okamoto, S. Hayakawa, R. Kamimura (1995) Experimental study of air leakage from cracks in reinforced concrete walls, Nuclear engineering and design, 156(1/2), pp. 159-165. https://doi.org/10.1016/0029-5493(94)00941-Q

Cited by

  1. Probabilistic Study on Pressure Behavior in Concrete Vacuum Tube Structures vol.17, pp.3, 2014, https://doi.org/10.7782/JKSR.2014.17.3.186
  2. Air-tightness Evaluation of Tube Structures for Super-speed Tube Railway Systems: I. Analytical Modeling and Material Test vol.14, pp.2, 2011, https://doi.org/10.7782/JKSR.2011.14.2.143
  3. Comparative Study on Rail Freight Policies of Various Countries vol.19, pp.5, 2016, https://doi.org/10.7782/JKSR.2016.19.5.685
  4. Probabilistic performance assessment of airtightness in concrete tube structures vol.20, pp.4, 2016, https://doi.org/10.1007/s12205-015-0735-z