• Title/Summary/Keyword: Aging Mechanism

Search Result 383, Processing Time 0.032 seconds

The Characteristics of EPDM by Exposure to Salt Fog and Ultra-violet (염무 및 자외선에 의한 EPDM의 전기적 특성변화)

  • Choi, Nam-Ho;Kim, Jae-Hoon;Jo, Hee-Yon;Park, Kang-Sik;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1413-1415
    • /
    • 1998
  • This study deals with the aging effect of EPDM, to understand the surface hydrophobicity mechanism and electrical characteristics due to UV irradiation and salt fog. A mini chamber was fabricated for this test. The specimen was subjected a specific aging cycle. With the result of various analysis methods and investigation, we could make a advanced understanding to the aging mechanism, like as the relationships of the surface morphology and surface electrical characteristics.

  • PDF

Tree aging observation of XLPE by image processing (화상처리에 의한 XLPE의 트리열화관측)

  • 임장섭;김태성;길촌승
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.551-557
    • /
    • 1995
  • For the observation of treeing, a visual measurement with an optical microscope has been used to explain breakdown mechanism in high-voltage systems. The conventional directed visual method of tree aging observation is difficult to measure in short time processing, and it is impossible to analyze on tree degradation area, progressed direction, tree pattern, etc. By using an image processing technique, the tree features which appear immediately after the tree initiation as well as changes in the configuration of the tree can be easily measured and observed than using the conventional visual methods. In this paper, we have developed a tree observating system by using image processing for tree growth, degradation area and other treeing progress. As an experimental result, it can be concluded that the image processing method is a more effective alternative than directed visual observation method. As a matter of fact, it is possible to record the image of tree propagation immediately after its first appearance and explain the characteristics of tree growth froth the computer processing image.

  • PDF

Aging Mechanisms of Lithium-ion Batteries

  • Jangwhan Seok;Wontae Lee;Hyunbeom Lee;Sangbin Park;Chanyou Chung;Sunhyun Hwang;Won-Sub Yoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.51-66
    • /
    • 2024
  • Modern society is making numerous efforts to reduce reliance on carbon-based energy systems. A notable solution in this transition is the adoption of lithium-ion batteries (LIBs) as potent energy sources, owing to their high energy and power densities. Driven by growing environmental challenges, the application scope of LIBs has expanded from their initial prevalence in portable electronic devices to include electric vehicles (EVs) and energy storage systems (ESSs). Accordingly, LIBs must exhibit long-lasting cyclability and high energy storage capacities to facilitate prolonged device usage, thereby offering a potential alternative to conventional sources like fossil fuels. Enhancing the durability of LIBs hinges on a comprehensive understanding of the reasons behind their performance decline. Therefore, comprehending the degradation mechanism, which includes detrimental chemical and mechanical phenomena in the components of LIBs, is an essential step in resolving cycle life issues. The LIB systems presently being commercialized and developed predominantly employ graphite anode and layered oxide cathode materials. A significant portion of the degradation process in LIB systems takes place during the electrochemical reactions involving these electrodes. In this review, we explore and organize the aging mechanisms of LIBs, especially those with graphite anodes and layered oxide cathodes.

Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis

  • Bang, EunJin;Lee, Bonggi;Noh, Sang-Gyun;Kim, Dae Hyun;Jung, Hee Jin;Ha, Sugyeong;Yu, Byung Pal;Chung, Hae Young
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.56-63
    • /
    • 2019
  • Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity.

The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy (Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향)

  • 이상용;이정환
    • Transactions of Materials Processing
    • /
    • v.5 no.4
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

Particle Growth in Oxalate Process II; Control of Barium Titanyl Oxalate Particle Size

  • Hyo-Soon Shin;Zee Hoon Park;Chang Hyun Kim;Byung Kyo Lee
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.70-75
    • /
    • 1996
  • On the basis of growth mechanism proposed by recent work, partile of barium titanyl oxalate was controlled by aging in water. From aging at $25^{\circ}C$ for 3 hours, uniform particles of 0.3 ${\mu}$m were obtained. During aging, abnormal particle growth was observed, which were thought to be caused by impurities in water. With increase of aging time and temperature, particle grows more, and differential growth was promoted. In aging for long time, grown particles were cracked.

  • PDF

Effect of High Temperature Aging Time on Mechanical Characteristics Degradation of STS 304 Steel (STS 304 강의 기계적 특성에 미치는 고온 열화 시간의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.380-385
    • /
    • 2017
  • Mechanical characteristics of the STS 304 which is heat resistance steel were investigated after artificial aging at $650^{\circ}C$ with 1,000 hours. Tensile test specimens and small test pieces were done artificial aging up to 1,000 hours in the high temperature atmospheric environment. The results present that as the aging time increased, tensile properties were deteriorated. In the case of failure mechanism, the configuration of the fractography presented drastic change from ductile to brittle with aging time. $M_{23}C_6$ carbide leading to the change of the mechanical properties and fracture mode of the aged STS 304 steel continuously precipitated along the grain boundaries of austenite microstructure.

Effect of Aging Time on Creep Property of Cast Haynes 282 Superalloy (초내열합금 Haynes 282 주조합금의 크리프강도에 미치는 시효처리의 영향)

  • Kim, Young-Ju;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • Ni-base superalloy Haynes 282 was developed as a gas turbine material for use in the ultra-super-critical stage (USC) of next-generation coal-fired power plants. Temperatures in the USC stage exceed $700^{\circ}C$ during operation. In spite of its important role Haynes 282 in increasing the performance of high-pressure turbines, as a result of its high-temperature capability, there is little information on the microstructure, deformation mechanism, or mechanical properties of the cast condition of this alloy. The aim of present study is to examine the creep properties of cast alloy and compare with wrought alloy. The ${\gamma}^{\prime}-precipitates$ were coarsen with the increase of aging time ranging from 8 to 48 hrs. A creep test performed at $750^{\circ}C$ showed faster minimum creep rate and shorter rupture lifetime with the aging time. A creep test performed showed only a slight difference in the rupture life between cast and wrought products. Based on the creep test results, the deformation mechanism is discussed using fractographs.

A Study on Cosmetic Acupuncture Through Anatomy and Physiology Interpretation (해부생리학 해석을 통한 미용침의 연구)

  • Kim, Min-Sik
    • Korean Journal of Acupuncture
    • /
    • v.30 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate the mechanism of Cosmetic Acupuncture through reinterpretation of anatomy and physiology. Methods : The causes of wrinkle increases and rapid aging of facial skin were studied and the theoretical system of Cosmetic Acupuncture treatment was analyzed through anatomy and physiology reinterpretation. Results and Conclusions : An increase in wrinkles and rapid aging of facial skin is caused by xerosis. Skin condition represents the condition of subcutaneous muscle. The reason why skin becomes easily dry is the heat produced by craniofacial part. Craniofacial part always generates lot of physiological fever because of the muscles. This physiological fever is produced from the muscles that are responsible for maintaining skull suture, controlling the movement of temporomandibular joint, maintaining head and neck posture. Controlling this fever is the crux of Cosmetic Acupuncture mechanism. These muscles correspond to Foot Taeyang meridian-muscle, Foot Soyang meridian-muscle and Foot Yangmyung meridian-muscle. Cosmetic Acupuncture is effective for preventing facial skin from aging and wrinkle increase by mechanical stimulus on facial muscles, and for controlling craniofacial part meridian-muscle system producing the heat.

Study on the longevity mechanism of a company through analogy of human aging (인간 노화 유비를 통한 기업의 장수 메커니즘 연구)

  • Choi, Kyu-Jin;Lee, Kang-Sun;Cho, Dae-myeong
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.87-97
    • /
    • 2020
  • This study summarized longevity factors of enterprises and presented longevity mechanism. By analogy of human aging and corporate longevity, the company's decline and longevity phenomenon were analyzed to derive corporate longevity mechanism, presented domestic and foreign longevity enterprises' cases study using above mechanism. The longevity mechanism first, as the human body restricts free radicals by dietary restrictions, companies also need continuous input efficiency. Second, as cognitive reserve by high thinking activities helps heath lifespan, companies can strengthen their profitability by continuous R&D. Third, as humans improve antioxidant functions by exercise, companies should develop risk management capabilities for environmental changes. This study can contribute to sustainable strategies for corporate managers, ultimately plan to suggest model of evaluation or diagnosis of corporate longevity.