• Title/Summary/Keyword: Agarivorans

Search Result 24, Processing Time 0.03 seconds

The Isolation of Agarolytic Agarivorans sp. HY-1 and the Characterization of Its Agarase (한천분해 Agarivorans sp. HY-1의 분리와 한천분해효소의 특성)

  • Lee, Dong-Geun;Cho, Ha-Yeon;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.285-289
    • /
    • 2022
  • In this study, the growth characteristics of an agar-degrading bacterium isolated from seawater samples collected from Yeongheungdo, Incheon, and the characteristics of its agarase were analyzed. The 16S rRNA gene sequence of the isolated strain was 95% similar to that of the genus Agarivorans, and thus the isolated strain was named Agarivorans sp. HY-1. When Agarivorans sp. HY-1 was cultured in a marine broth 2216 medium at 27℃ and 250 rpm, it showed maximum growth on day 1 and showed maximum enzymatic activity on day 2. A crude enzyme solution was prepared from secreted agarase in the culture medium. The extracellular agarase of the Agarivorans sp. HY-1 strain showed maximal activity at 40℃ and pH 7.0 (20 mM Tris-HCl) with 591.91 U/l. The agarase exhibited relative activities of 64, 91, 100, 97, 89, and 60% at 20, 30, 40, 50, 60, and 70℃, respectively. At pH 5, 6, 7, and 8, the relative activities were 79, 95, 100, and 55%, respectively. Furthermore, the agarase exhibited >86% residual activity at 20, 30, and 40℃ for 2 hr and >44% residual activity at 50℃ after 2 hr. A TLC analysis confirmed that Agarivorans sp. HY-1 produced α-agarase. As the degradation products of α-agarase have anticancer and antioxidant effects, Agarivorans sp. HY-1 and its agarase may well prove useful.

Isolation of Agarivorans sp. KC-1 and Characterization of Its Thermotolerant β-Agarase (한천분해세균 Agarivorans sp. KC-1의 분리 및 내열성 β-아가라제의 특성 규명)

  • Min, Kyung-Cheol;Lee, Chang-Eun;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.1056-1061
    • /
    • 2018
  • This article reports an agar-degrading marine bacterium and characterizes its agarase. The agar-degrading marine bacterium, KC-1, was isolated from seawater on the shores of Sacheon, in Gyeongnam province, Korea, using Marine Broth 2216 agar medium. To identify the agar-degrading bacterium as Agarivorans sp. KC-1, phylogenetic analysis based on the 16S rRNA gene sequence was used. An extracellular agarase was prepared from a culture medium of Agarivorans sp. KC-1, and used for the characterization of enzyme. The relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 65, 91, 96, 100, 77, and 35%, respectively. The relative activities at pH 5, 6, 7, and 8 were 93, 100, 87, and 82%, respectively. The extracellular agarase showed maximum activity (254 units/l) at pH 6.0 and $50^{\circ}C$ in 20 mM of Tris-HCl buffer. The agarase activity was maintained at 90% or more until 2 hr exposure at $20^{\circ}C$, $30^{\circ}C$ and $40^{\circ}C$, but it was found that the activity decreased sharply from $60^{\circ}C$. A zymogram analysis showed that Agarivorans sp. KC-1 produced 3 agar-degrading enzymes that had molecular weights of 130, 80, and 69 kDa. A thin layer chromatography analysis suggested that Agarivorans sp. KC-1 produced extracellular ${\beta}$-agarases as it hydrolyzed agarose to produce neoagarooligosaccharides, including neoagarohexaose (21.6%), neoagarotetraose (32.2%), and neoagarobiose (46.2%). These results suggest that Agarivorans sp. KC-1 and its thermotolerant ${\beta}$-agarase would be useful for the production of neoagarooligosaccharides that inhibit bacterial growth and delay starch degradation.

Isolation of Agarivorans sp. JS-1 and Characterization of Its β-Agarase (한천분해세균 Agarivorans sp. JS-1의 분리 및 β-아가라제의 특성 규명)

  • Jin Sun Kim;Dong-Geun Lee;Go-Wun Yeo;Min-Joo Park;Sang-Hyeon Lee
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.357-362
    • /
    • 2023
  • This report looks at an agar-degrading marine bacterium and characterization of its agarase. Agar-degrading marine bacterium JS-1 was isolated with Marine agar 2216 media from seawater from the seashore of Sojuk-do, Changwon in Gyeongnam Province, Korea. The agar-degrading bacterium was named as Agarivorans sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequencing. The extracellular agarase was prepared from the culture media of Agarivorans sp. JS-1 and used for characterization. Relative activities at 20℃, 30℃, 35℃, 40℃, 45℃, 50℃, 55℃, and 60℃ were 70%, 74%, 78%, 83%, 87%, 100%, 74%, and 66%, respectively. Relative activities at pH 5, 6, 7, and 8 were 91%, 100%, 90%, and 89%, respectively. Its extracellular agarase showed maximum activity (207 units/l) at pH 6.0 and 50℃ in 20 mM Tris-HCl buffer. The residual activity after heat treatment at 20℃, 30℃, and 50℃ for 30 minutes was 90%, 70%, and 50% or more, respectively. After a 2-hour heat treatment at 20℃, 30℃, 35℃, 40℃, and 45℃, the residual activity was 80%, 68%, 65%, 63%, and 57%, respectively. At 50℃ and above, after heat treatment for 30 minutes, the residual activity was below 60%. Thin layer chromatography analysis suggested that Agarivorans sp. JS-1 produces extracellular β-agarases as they hydrolyze agarose to produce neoagarooligosaccharides such as neoagarohexaose (20.6%), neoagarotetraose (58.5%), and neoagarobiose (20.9%). Agarivorans sp. JS-1 and its thermotolerant β-agarase would be useful in the production of neoagarooligosaccharides, showing functional activity such as inhibition of bacterial growth and delay of starch degradation.

Effect of Agarase Signal Peptide from Agarivorans albus YKW-34 on Protein Secretion in Escherichia coli (대장균에서 단백질 분비에 대한 Agarivorans albus YKW-34의 Agarase 시그널펩티드의 효과)

  • Lee, Joo-Young;Song, Dae-Geun;Son, Jin-Ki;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.2
    • /
    • pp.105-107
    • /
    • 2010
  • To overcome the limitation of E. coli expression system such as inclusion body formation and disulfide bond failure, we tried to express the heterologous protein as a secreted form. We adopted agarase signal peptide (ASP; 23 amino acid residues) from Agarivorans albus YKW-34 which is one of marine bacteia. When we used ASP to express $\beta$-agarase, about 42% activity was detected in media.

Development of a thermo-stabel ${\beta}-agarase$ from marine organism

  • Lee, Sang-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.31-32
    • /
    • 2005
  • Neoagaro-oligosaccharides are produced only by enzymatic degradation of agarose by ${\beta}-agarase.^{1)}$ Neoagaro-oligosaccharides inhibit the growth of bacteria, slow the rate of degradation of starch, are used as low-calorie additives to improve food quality, and have macrophage-stimulating activity. Furthermore, neoagarobiose is a rare reagent that has both moisturizing effect on skin and whitening effect on melanoma $cells.^{2)}$ An agar-degrading marine bacterium was isolated from the sea water at the northeast coast in Cheju island, Korea. The strain was gram negative, aerobic, and motile rod. The 16S rRNA of the strain had the closest match of 98% homology, with that from Agarivorans albus. On the basis of several phenotypic characters and a phylogenetic analysis, this strain was designated Agarivorans sp. JA-1. In solid agar plate, Agarivorans sp. JA-1 produced a diffusible agarase that caused agar softening around the colonies. Agarivorans sp. JA-1 was cultured for 36 hr in marine broth 2216 (Difco, USA) and the supernatant that containing an extracellular ${\beta}-agarase$ was prepared by centrifugation of culture media. The enzyme exhibited relatively strong activity at $40^{\circ}C$ and was stable up to $60^{\circ}C$. Using PCR primers derived from the ${\beta}-agarase$ gene of Vibrio sp., the gene encoding ${\beta}-agarase$ from Agarivorans sp. JA-1 was cloned and sequenced. The structural gene consists of 2931 bp encoding 976 amino acids with a predicted molecular weight of 107,360 Da. The deduced amino acid sequence showed 99% and 34% homology to $agaA^{2)}$ and $agaB^{2)}$ genes for ${\beta}-agarase$ from Vibrio sp., respectively. The expression plasmid for ${\beta}-agarase$ gene of Agarivorans sp. JA-1 is being constructed and the recombinant enzyme will be biochemically characterized.

  • PDF

Production of ${\beta}$-agarase in Batch and Fed-batch Culture by Agarivorans sp. JA-1 (한천분해효소를 생산하는 Agarivorans sp. JA-1의 배양조건 및 Fed-batch 배양)

  • Lee, Song-Ae;Kim, Jin-Uk;Jung, Jong-Geun;Kim, In-Hae;Lee, Sang-Hyeon;Kim, Sang-Jin;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • Characteristics of ${\beta}$-agarase production of Agarivorans sp, JA-1 isolated from north-eastern sea of Jeju marine environment was studied. Optimal cell growth was definite that the medium containing agar is 0.2%. The decreasing pattern of viscosity and agar concentration was same and they reached almost zero after 15 hours. Fed-batch culture was studied to improve agarase productivity by Agarivorans sp. JA-1 in marine broth containing 2.0 g/L agar with intermittent addition of 0.8 g agar two times. The hydrolysis products were identified oligosaccharide of degrees of polymerization 6.

Isolation and Characterization of a Marine Bacterium Producing Thermotolerant Agarase (내열성 한천분해효소를 생산하는 해양세균의 분리 및 특성)

  • Park Ceun-Tae;Lee Dong-Ceun;Kim Nam Young;Lee Eo-Jin;Jung Jong-Ceun;Lee Jae-Hwa;Heo Moon-Soo;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.884-888
    • /
    • 2005
  • An agar-degrading bacterium was isolated from north-eastern sea of Jeju island and cultured in marine agar 2216 media. Biochemical and morphologicl characteristics and 165 rRNA gene revealed that isolated strain was member of Agarivorans genus, and named Agarivorans sp. JA-1. Agarase was produced as growth-related and expressed regardless of agar presence. Optimal pH was 8 at 50 mM Clycine-NaOH buffer, and activity was maximum at $40^{\circ}C$E Enzymatic activity was maintained over $80\%$ at $60^{\circ}C$t and $70\%$ at $80^{\circ}C$ which is thermotolerant. Hence isolated novel Agarivorans sp. JA-1 strain and its beta-agarase could be used for the production of functional oligosaccharide from agar in solution state.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Characterization of a Glycoside Hydrolase Family 50 Thermostable β-agarase AgrA from Marine Bacteria Agarivorans sp. AG17

  • Nikapitiya, Chamilani;Oh, Chul-Hong;Lee, Young-Deuk;Lee, Suk-Kyoung;Whang, Il-Son;Lee, Je-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.36-48
    • /
    • 2010
  • An agar-degrading Agarivorans sp. AG17 strain was isolated from the red seaweed Grateloupia filicina collected from Jeju Island. A beta-agarase gene from Agarivorans sp. AG17 was cloned and designated as agrA. agrA has a 2,985 bp coding region encoding 995 amino acids and was classified into the glycoside hydrolase family (GHF)-50. Predicted molecular mass of the mature protein was 105 kDa. His-tagged agrA was overexpressed in Escherichia coli and purified as a fusion protein. The enzyme showed 158.8 unit/mg specific activity (optimum temperature at $65^{\circ}C$ and pH 5.5 in acetate buffer) with unique biochemical properties (high thermal and pH stabilities). Enzyme produced neoagarohexaose, neoagarotetraose and neoagarobiose by degrading agar, and hydrolyzed neoagaro-oligosaccharides were biologically active. Hence the purified enzyme has potential for use in industrial applications such as the development of cosmetics and pharmaceuticals.

Cloning, Expression, and Characterization of a Cold-Adapted and Surfactant-Stable Alginate Lyase from Marine Bacterium Agarivorans sp. L11

  • Li, Shangyong;Yang, Xuemei;Zhang, Lan;Yu, Wengong;Han, Feng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to find a cold-adapted and surfactant-stable alginate lyase as a candidate for biotechnological and industrial applications. The gene for a new alginate lyase, AlyL1, from Agarivorans sp. L11 was cloned and expressed in Escherichia coli. The recombinant AlyL1 was most active at 40℃ (1,370 U/mg). It was a cold-adapted alginate lyase, which showed 54.5% and 72.1% of maximum activity at 15℃ and 20℃, respectively. AlyL1 was an alkaliphilic enzyme and most active at pH 8.6. In addition, it showed high stability in the presence of various surfactants at a high concentration (from 0.1% to 1% (w/v)). AlyL1 was an endo-type alginate lyase that degraded both polyM and polyG blocks, yielding disaccharides and trisaccharides as the main products. This is the first report of the cloning and functional expression of a cold-adapted and surfactant-stable alginate lyase. AlyL1 might be an interesting candidate for biotechnological and industrial applications.