• Title/Summary/Keyword: Ag pattern

Search Result 180, Processing Time 0.026 seconds

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells (가열롤 임프린팅 방법을 이용한 유연 유기태양전지용 Ag 그리드 패턴 PET 기판 제작)

  • Cho, Jung Min;Jo, Jeongdai;Kim, Taeil;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.993-998
    • /
    • 2014
  • Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).

The Variation of Sapphire Substrate Shape of Micro LED Array to Increasing of Light Intensity and Contrast Ratio (Light Intensity 및 명암비 향상을 위한 마이크로 LED의 사파이어 기판 형상 변화 연구)

  • Cha, Yu-Jung;Kwak, Joon Seop
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Micro-LEDs can be applied to various parts of a product. However, it has disadvantages compared to general LEDs in large displays such as low efficiency, intensity, and contrast ratio, among others, owing to their short history of study. The simulations were carried out using ray-tracing software to investigate the change in light intensity and light distribution according to pattern shapes on the sapphire substrate of the flip-chip micro-LED (FC μ-LED) array. Three patterns-concave square patterns, convex square patterns, and Ag coated convex patterns-which existed on the opposite side of FC μ-LEDs (115 ㎛ × 115 ㎛) array, were applied. The intensity of FC μ-LEDs on the center of the receivers depends on the pattern depth with shape. The concave square patterns having FC μ-LEDs arrays show that decreasing intensity as the patterns depth. On the contrary, the convex square patterns having FC μ-LEDs arrays shows that increasing intensity as the patterns depth. In addition, the highest intensity shows that FC μ-LEDs having Ag-coated convex patterns on the opposite side of sapphire lead to a reduction in light crosstalk owing to the Ag film.

2-Dimensional Holographic Grating Formation in Chalcogenide Thin Films

  • Lee, Jung-Tae;Yeo, Choel-Ho;Chung, Hong-Bay
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.34-37
    • /
    • 2004
  • Amorphous chalcogenide thin films, especially a-(Se, S) based films, exhibit a number of photo-induced phenomena. In this study, we make the As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35//Ag thin film and then we measure the holographic diffraction efficiency according to thickness of Ag. And we form the two-dimensional holographic grating. At first, we formed one-dimensional grating and then we form two-dimensional grating by rotate the sample. We found out the most suitable thickness of Ag and in case of As$\_$40/Ge$\_$10/Se$\_$15/S$\_$35//Ag(600${\AA}$), the diffraction efficiency was more higher than other samples. The holographic grating was formed by He-Ne laser(λ=632.8nm). The intensity of incident beam was 2.5mW and incident angle was 20$^{\circ}$. We confirm. the two-dimensional holographic grating by the pattern of diffracted beam and AFM(Atomic Force Microscope) image. We perform the etching process using by 0.26N NaOH in order to confirm clearly two-dimensional grating.

Self Assembled Patterns of Ag Using Hydrophobic and Hydrophilic Surface Characteristics of Glass (유리기판의 친수.소수 상태 변화를 이용한 자기정렬 Ag Pattern 형성 연구)

  • Choo Byoung-Kwon;Choi Jung-Su;Kim Gun-Jeong;Lee Sun-Hee;Park Kyu-Cang;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.354-359
    • /
    • 2006
  • Recently, the interest in lithography without photo exposure has been increased compare to the conventional photolithography in nano meter and micrometer size patterning area. We studied a self aligned dipping of Ag solution through micro contact printing (${\mu}-CP$) with octadecyltrichlorosilane (OTS) treated polydimethylsiloxane (PDMS) soft mold. The OTS monolayer on the patterned PDMS was formed by dipping it into OTS solution. We transferred the OTS monolayer from PDMS mold to the glass. The OTS monolayer changed the surface energy from hydrophilic surface to hydrophobic surface, And then we made self aligned Ag solution patterns just after dipping the substrate, using adhesion difference of Ag solution between OTS treated hydrophobic area and non-OTS treated hydrophilic area. We finally get the Ag patterns through only dip-coating after the ${\mu}-CP$ process. And we observed surface energies on the glass substrate through the contact angle measurements as time goes on.

Gravure Offset Printed on Fine Pattern by Developing Electrodes for the Ag Paste (Gravure Offset 인쇄에 의한 미세 전극용 Ag Paste 개발)

  • Lee, Sang-Yoon;Jang, Ah-Ram;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.45-56
    • /
    • 2012
  • Printing technology is accepted by appropriate technology that smart phones, tablet PC, display(LCD, OLED, etc.) precision recently in the electronics industry, the market grows, this process in the ongoing efforts to improve competitiveness through the development of innovative technologies. So printed electronics appeared by new concept. This technology development is applied on electronic components and circuits for the simplification of the production process and reduce processing costs. Low-temperature process making possible for widening, slimmer, lighter, and more flexible, plastic substrates, such as(flexible) easily by forming a thin film on a substrate has been studied. In the past, the formation of the electrode used a screen printing method. But the screen printing method is formation of fine patterns, high-speed printing, mass production is difficult. The roll-to-roll printing method as an alternative to screen printing to produce electronic devices by printing techniques that were used traditionally in the latest technology and processing techniques applied to precision control are very economical to implement fine-line printing equipment has been evaluated as. In order to function as electronic devices, especially the dozens of existing micro-level of non-dot print fine line printing is required, the line should not break at all, because according to the specifications required to fit the ink transfer conditions should be established. In this study of roll-to-roll printing conductive paste suitable for gravure offset printing by developing Ag paste for forming fine patterns to study the basic physical properties with the aim of this study were to.

The Study of Amorphous Ge-Se Thin Film for applying Holographic Diffraction Pattern to Solid Electrolyte (홀로그래픽 회절 패턴을 고체전해질에 적용하기 위한 비정질 Ge-Se 박막의 특성에 관한 연구)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.123-124
    • /
    • 2008
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about $1M{\Omega}$ to several hundreds of ${\Omega}$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

The study of Ag etching effect by adding compound on the lead frame process (Lead frame 공정 중 화합물에 따른 Ag 에칭효과)

  • 이경수;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.859-862
    • /
    • 2001
  • This study describes a selective Ag etching solution for use with pattern on the surface of copper. This etching solution uses potassium iodide and potassium sulfate as the ligand that coordinates to the metal ions and ferricyanide as the oxidant. The etching rate was depended on the concentration of co-ligands and time. But the etching rate wasn't depended on the pH(2∼6), and oxidant(K$_3$Fe(CN)$\_$6/). Complete etching of silver can be achieved rapidly within 90sec for 4.46${\mu}$m thick metal films when aqueous solutions containing K$_3$Fe(CN)$\_$6/, K$_2$S$_2$O$\_$8/ and KI was used. This etching solution was characteristic of anisotropic etching.

  • PDF

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator (사다리꼴 PZT/Ag Laminate 외팔보 발전기의 압전 에너지 하베스팅 특성)

  • Na, Yong-Hyeon;Lee, Min-Seon;Yun, Ji-Sun;Hong, Youn-Woo;Paik, Jong-Hoo;Cho, Jeong-Ho;Lee, Jung Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.462-468
    • /
    • 2018
  • The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.

Fabrication and Characterization of Silver Copper(I) Oxide Nanoparticles for a Conductive Paste (은이 코팅된 Copper(I) Oxide 나노 입자 및 도전성 페이스트의 제조 특성)

  • Park, Seung Woo;Son, Jae Hong;Sim, Sang Bo;Choi, Yeon Bin;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • This study investigates Ag coated $Cu_2O$ nanoparticles that are produced with a changing molar ratio of Ag and $Cu_2O$. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and $Cu_2O$ determination, and SEM image analysis confirms that Ag is partially coated on the surface of $Cu_2O$ nanoparticles. The conductive paste with Ag coated $Cu_2O$ nanoparticles approaches the specific resistance of $6.4{\Omega}{\cdot}cm$ for silver paste(SP) as $(Ag)/(Cu_2O)$ the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of $100{\mu}m$ or less has a surface resistance of 5 to $20{\mu}{\Omega}{\cdot}cm$, while in this research an Ag coated $Cu_2O$ paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of $10{\mu}m$ or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.

Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure (은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향)

  • Shin, Yong-Woo;Kim, Kyu-Byung;Noh, Su-Jin;Soh, Soon-Young
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.162-167
    • /
    • 2018
  • The effect of the average particle size and shape of silver nanoparticles for the transparent conductive film (TCF) was studied. Optical and electrical properties of silver conductive lines coated on the polyethylene terephthalate (PET) film was also measured. Silver nanoparticles produced by Ag-CM, Ag-ME, Ag-EE methods showed an excellent conductivity compared to those produced by Ag-EB, Ag-CR and Ag-PL methods, but a little difference in the transparency. In the case of the former three silver nanoparticles, the average particle size was about 80 nm or less and the size was uniform. For the latter case, the severe agglomeration phenomena of particles was observed and the average particle size was 100 nm or more. This result was consistent with the result of the uniformity of the pattern shape and thickness on conductive line patterns observed by SEM. Therefore, it was confirmed that the electrical characteristics could be obtained when the average particle size of silver nanoparticles is smaller and the uniformity of the particles is maintained.