Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.7.462

Piezoelectric Energy Harvesting Characteristics of Trapezoidal PZT/Ag Laminate Cantilever Generator  

Na, Yong-Hyeon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Min-Seon (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University)
Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.7, 2018 , pp. 462-468 More about this Journal
Abstract
The piezoelectric energy harvesting characteristics of a trapezoidal cantilever generator with lead zirconate titanate (PZT) laminate were investigated with various Ag inner electrodes. The piezoelectric mode of operation was a transverse mode by using a planar electrode pattern. The piezoelectric cantilever generator was fabricated using trapezoidal cofired-PZT/Ag laminates by five specimens of 2, 3, 4, 7, and 13 layers of Ag. As the number of Ag electrodes increased, impedance and output voltage at resonant frequency significantly decreased, and capacitance and output current showed an increasing tendency. A maximum output power density of $7.60mW/cm^3$ was realized for the specimen with seven Ag layers in the optimal condition of acceleration (1.2 g) and resistive load ($600{\Omega}$), which corresponds to a normalized power factor of $5.28mW/g^2{\cdot}cm^3$.
Keywords
Piezoelectric; Laminate; Trapezoidal; Transverse mode; Energy harvesting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Chalasani and J. M. Conrad, Proc. IEEE SoutheastCon 2008 (IEEE, Huntsville, USA, 2008) p. 442.
2 K. A. Cook-Chennault, N. Thambi, and A. M. Sastry, Smart Mater. Struct., 17, 043001 (2008). [DOI: https://doi.org/10.1088/0964-1726/17/4/043001]   DOI
3 N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, IEEE Trans. VLSI Syst., 17, 627 (2009). [DOI: https://doi.org/10.1109/TVLSI.2008.2006792]   DOI
4 S. Li, J. Yuan, and H. Lipson, J. Appl. Phys., 109, 026104 (2011). [DOI: https://doi.org/10.1063/1.3525045]   DOI
5 R. Kashyap, T. R. Lenka, and S. Baishya, IEEE Trans. Electron Devices, 63, 1281 (2016). [DOI: https://doi.org/10.1109/TED.2015.2514160]   DOI
6 H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). [DOI: https://doi.org/10.1007/s12541-011-0151-3]   DOI
7 S. B. Kim, H. Park, S. H. Kim, H. C. Wikle, J. H. Park, and D. J. Kim, J. Microelectromech. Syst., 22, 26 (2013). [DOI: https://doi.org/10.1109/JMEMS.2012.2213069]   DOI
8 T. Galchev, E. E. Aktakka, and K. Najafi, J. Microelectromech. Syst., 21, 1311 (2012). [DOI: https://doi.org/10.1109/JMEMS.2012.2205901]   DOI
9 C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, J. Intell. Mater. Syst. Struct., 20, 1923 (2009). [DOI: https://doi.org/10.1177/1045389X09341200]   DOI
10 W. G. Ali and G. Nagib, Proc. 2012 International Conference on Engineering and Technology (ICET) (IEEE, Cairo, Egypt, 2012), p. 1.
11 L. Gu, Microelectron. J., 42, 277 (2011). [DOI: https://doi.org/10.1016/j.mejo.2010.10.007]   DOI
12 R. Hosseini and M. Hamedi, J. Micromech. Microeng., 25, 125008 (2015). [DOI: https://doi.org/10.1088/0960-1317/25/12/125008]   DOI
13 S. Du, Y. Jia, S. T. Chen, C. Zhao, B. Sun, E. Arroyo, and A. A. Seshia, Sens. Actuators, A, 263, 693 (2017). [DOI: https://doi.org/10.1016/j.sna.2017.06.026]   DOI
14 S.M.K. Tabatabaei, S. Behbahani, and P. Rajaeipour, Microsyst. Technol., 22, 2435 (2016). [DOI: https://doi.org/10.1007/s00542-015-2605-5]   DOI
15 R. Hosseini, and M. Hamedi, Microsyst. Technol., 22, 1127 (2016). [DOI: https://doi.org/10.1007/s00542-015-2583-7]   DOI
16 A. Shebeeb and H. Salleh, Proc. 2010 IEEE International Conference on Semiconductor Electronics (ICSE2010) (IEEE, Melaka, Malaysia, 2010), p. 275.
17 A. Loui, F. T. Goericke, T. V. Ratto, J. Lee, B. R. Hart, and W. P. King, Sens. Actuators, A, 147, 516 (2008). [DOI: https://doi.org/10.1016/j.sna.2008.06.016]   DOI
18 M. S. Lee, C. I. Kim, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, J. H. Cho, Y. H. Park, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 768 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.12.768]
19 N. Kong, D. S. Ha, A. Erturk, and D. J. Inman, J. Intell. Mater. Syst. Struct., 21, 1293 (2010). [DOI: https://doi.org/10.1177/1045389X09357971]   DOI
20 H. C. Song, C. Y. Kang, S. J. Yoon, and D. Y. Jeong, Met. Mater. Int., 18, 499 (2012). [DOI: https://doi.org/10.1007/s12540-012-3018-y]   DOI
21 M. A. Karami, O. Bilgen, D. J. Inman, and M. I. Friswell, IEEE Trans. Ultrason. Eng., 58, 1508 (2011). [DOI: https://doi.org/10.1109/TUFFC.2011.1969]   DOI
22 S. Roundy and P. K. Wright, Smart Mater. Struct., 13, 1131 (2004) [DOI: https://doi.org/10.1088/0964-1726/13/5/018]   DOI
23 D. Zhu, A. Almusallam, S. P. Beeby, J. Tudor, and N. R. Harris, Proc. PowerMEMS 2010 (PowerMEMS, Belgium, 2010) p. 335.