Browse > Article
http://dx.doi.org/10.7736/KSPE.2014.31.11.993

Fabrication of Ag Grid Patterned PET Substrates by Thermal Roll-Imprinting for Flexible Organic Solar Cells  

Cho, Jung Min (School of Global Convergence Studies, Hanbat University)
Jo, Jeongdai (Department of Printed Electronics, Korea Institute of Machinery and Materials)
Kim, Taeil (School of Global Convergence Studies, Hanbat University)
Kim, Dong Soo (School of Global Convergence Studies, Hanbat University)
Publication Information
Abstract
Silver (Ag) grid patterned PET substrates were manufactured by thermal roll-imprinting methods. We coated highly conductive layer (HCL) as a supply electrode on the Ag grid patterned PET in the three kinds of conditions. One was no-HCL without conductive PEDOT:PSS on the Ag grid patterned PET substrate, another was thin-HCL coated with ~50 nm thickness of conductive PEDOT:PSS on the Ag grid PET, and the other was thick-HCL coated with ~95 nm thickness of conductive PEDOT:PSS. These three HCLs in order showed 73.8%, 71.9%, and 64.7% each in transmittance, while indicating $3.84{\Omega}/{\Box}$, $3.29{\Omega}/{\Box}$, and $2.65{\Omega}/{\Box}$ each in sheet resistance. Fabrication of organic solar cells (OSCs) with HCL Ag grid patterned PET substrates showed high power conversion efficiency (PCE) on the thin-HCL device. The thick-HCL device decreased efficiency due to low open circuit voltage ($V_{OC}$). And the Ag grid pattern device without HCL had the lowest energy efficiency caused by quite low short current density ($J_{SC}$).
Keywords
Thermal Roll-Imprinting; Ag Grid PET Film; Flexible Organic Solar Cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brabec, C. J., "Organic Photovoltaics: Technology and Market," Sol. Energ. Mat. Sol. C., Vol. 83, No. 2, pp. 273-292, 2004.   DOI   ScienceOn
2 Li, G., Shrotriya, W., Huang, J., Yao, Y., Moriarty, T., et al., "High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends," Nat. Mater., Vol. 4, No. 11, pp. 864-868, 2005.   DOI   ScienceOn
3 Wang, J.-C., Weng, W.-T., Tsai, M.-Y., Lee, M.-K., Horng, S.-F., et al., "Highly Efficient Flexible Inverted Organic Solar Cells Using Atomic Layer Deposited ZnO as Electron Selective Layer," J. Mater. Chem., Vol. 20, No. 5, pp. 862-866, 2010.   DOI
4 Kaltenbrunner, M., White, M. S., Glowacki, E. D., Sekitani, T., Someya, T., et al., "Ultrathin and Lightweight Organic Solar Cells with High Flexibility," Nat. Commun., Vol. 3, Paper No. 770, 2012.   DOI   ScienceOn
5 Krebs, F. C., "Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques," Sol. Energ. Mat. Sol. C., Vol. 93, No. 4, pp. 394-412, 2009.   DOI   ScienceOn
6 Lin, H. K., Chiu, S. M., Cho, T. P., and Huang, J. C., "Improved Bending Fatigue Behavior of Flexible PET/ITO Film with Thin Metallic Glass Interlayer," Mater. Lett., Vol. 113, pp. 182-185, 2013.   DOI
7 Andersen, T. R., Dam, H. F., Hosel, M., Helgesen, M., Carle, J. E., et al., "Saclable, Ambient Atmosphere Roll-to-Roll Manufacture of Encapsulated Large Area, Flexible Organic Tandem Solar Cells Modules," Energy Environ. Sci., Vol. 7, No. 9, pp. 2925-2933, 2014.   DOI
8 Koidis, C., Logothetidis, S., Ioakeimidis, A., Laskarakis, A., and Kapnopoulos, C., "Key Factors to Improve the Efficiency of Roll-to-Roll Printed Organic Photovoltaics," Org. Electron., Vol. 14, No. 7, pp. 1744-1748, 2013.   DOI
9 Apilo, P., Hiltunen, J., Valinmaki, M., Heinilehto, S., Sliz, R., and Hast, J., "Roll-to-Roll Gravure Printing of Organic Photovoltaic Modules-Insulation of Processing Defects by an Interfacial Layer," Prog. Photovolt: Res. Appl., DOI: 10.1002/pip.2508.   DOI
10 Lee, S., Kwon, J.-Y., Yoon, D., Cho, H., You, J. Y., et al., "Bendability Optimization of Flexible Optical Nanoelectronics via Neutral Axis Engineering," Nanoscale Res. Lett., Vol. 7, No. 1, pp. 1-7, 2012.   DOI   ScienceOn
11 Inganas, O., "Organic photovoltaics: Avoiding indium," Nature Photonics, Vol. 5, No. 4, pp. 201-202, 2011.   DOI
12 Barnes, T. M., Bergeson, J. D., Tenent, R. C., Larsen, B. A., Teeter, G., et al., "Carbon Nanotube Network Electrodes Enabling Efficient Organic Solar Cells without a Hole Transport Layer," Appl. Phys. Lett., Vol. 96, No. 24, pp. 3309-3, 2010.
13 Gaynor, W., Burkhard, G. F., McGehee, M. D., and Peumans, P., "Smooth Nanowire/Polymer Composite Transparent Electrodes," Adv. Mater., Vol. 23, No. 26, pp. 2905-2910, 2011.   DOI   ScienceOn
14 Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., et al., "Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., Vol. 5, No. 8, pp. 574-578, 2010.   DOI
15 Yu, J.-S., Jung, G. H., Jo, J., Kim, J. S., Kim, J. W., et al., "Transparent Conductive Film with Printable Embedded Patterns for Organic Solar Cells," Sol. Energ. Mat. Sol. C., Vol. 109, pp. 142-147, 2013.   DOI   ScienceOn
16 van de Wiel, H., Galagan, Y., Van Lammeren, T., De Riet, J., Gilot, J., et al., "Roll-to-Roll Embedded Conductive Structures Integrated into Organic Photovoltaic Devices," Nanotechnology, Vol. 24, No. 48, Paper No. 484014, 2013.   DOI
17 Sapp, S., Luebben, S., Losovyj, Ya. B., Jeppson, P., Schulz, D. L., and Caruso, A. N., "Work function and implications of doped poly(3,4-ethylenedioxythiophene)-co-poly(ethylene glycol)," Appl. Phys. Lett., Vol. 88, No. 15, Paper No. 152107, 2006.   DOI
18 Cho, J. M., Kwak, S.-W., Aqoma, H., Kim, J. W., Shin, W. S., et al., "Effects of Ultraviolet-ozone Treatment on Organic-Stabilized ZnO Nanoparticlebased Electron Transporting Layers in Inverted Polymer Solar Cells," Org. Electron., Vol. 15, pp. 1942-1950, 2014.   DOI
19 Shrotriya, V., Li, G., Chu, C.-W., and Yang, Y., "Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells," Appl. Phys. Lett., Vol. 88, Paper No. 073508, 2006.   DOI   ScienceOn