• 제목/요약/키워드: AfsR2

검색결과 21건 처리시간 0.024초

DNA 마이크로어레이 시스템 분석을 통한 S. lividans 유래 항생제 조절유전자 afsR2 기능 분석 (Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System)

  • 김창영;노준희;이한나;김응수
    • KSBB Journal
    • /
    • 제24권3호
    • /
    • pp.259-266
    • /
    • 2009
  • AfsR2 과발현 S. lividans TK21을 이용하여 DNA microarray를 수행하였다. 그 결과, phosphate starvation과 관련 있는 42개의 유전자들이 up-regulated 되었으며, 특히 SCO4139 (pstB, phosphate ABC transport system ATP-binding protein)와 SCO4142 (pstS, phosphate-binding protein precursor)는 afsR2가 phosphate와 같은 nutrient starvation에 적극적으로 관여한다는 것을 나타내며, SCO4228 (putative phosphate transport system regulatory protein)은 기존에 수행되었던 2D-electrophoresis 연구나 afsS null S. coelicolor를 이용한 DNA microarray 연구에서도 공통적으로 보고되었던 유전자로서 phosphate lilitation에 대한 afsR2의 효과가 지속적으로 검증되고 있음을 뜻한다. 또한 afsR2 과발현을 통해서 sigma factor인 SCO2954 (sigL)과 SCO5147 (sigE)의 발현이 유도되었으며 두 유전자의 구조적인 특징을 고려해 보았을 때 afsR2가 RNA polymerase와의 linker로서의 역할을 추측해 볼 수 있다. 뿐만 아니라 whi 관련 유전자들의 발현 또한 afsR2에 의해 증가되었다. 이는 afsR2가 단순히 2차 대사물질 생합성 조절에만 관여하는 것이 아니라 형태적 분화에 작용함으로써 최종적으로 여러 2차 대사물질의 합성을 유도한다고 말할 수 있다. 이러한 결과들을 토대로 afsR2가 기존에 항생제 생합성에만 관여하는 global regulatory 조절인자가 아닌 방선균이 stationary phase로 전환되는 시점에서 형태적 분화에 영향을 미치고 phosphate limitation stress를 줄여주는 2차 대사의 key-factor regulatory 유전자임을 알 수 있다.

Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.248-253
    • /
    • 2005
  • AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.

Functional Dissection of Sigma-like Domain in Antibiotic Regulatory Gene, afsR2 in Streptomyces lividans

  • Kim Chang-Young;Park Hyun-Joo;Kim Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1477-1480
    • /
    • 2006
  • The 63-amino-acid-encoding afsR2 is a global antibiotics-stimulating regulatory gene identified from the chromosome of Streptomyces lividans. To dissect a putative functional domain in afsR2, several afsR2-derivative deletion constructs were generated and screened for the loss of actinorhodin-stimulating capability. The afsR2-derivative construct missing a 50-bp C-terminal region significantly lost its actinorhodin-stimulating capability in S. lividans. In addition, site-directed mutagenesis on amino acid positions of #57-#61 in a 50-bp C-terminal region, some of which are conserved among known Sigma 70 family proteins, significantly changed the AfsR2's activity. These results imply that the C-terminal region of AfsR2 is functionally important for antibiotics-stimulating capability and the regulatory mechanism might be somehow related to the sigma-like domain present in the C-terminal of AfsR2.

Physiological and Genetic Factors Controlling Streptomyces Regulatory Gene Expression Involved in Antibiotic Biosynthesis

  • 김응수
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2002년도 추계학술대회
    • /
    • pp.68-72
    • /
    • 2002
  • While the biosynthetic gene cluster encoding the pigmented antibiotic actinorhodin is present in the two closely related bacterial species, Streptomyces lividans and Streptomyces coelicolor, it normally is expressed only in S. coelicolor---generating the deep blue colonies responsible for the S. coelicolor name. However, multiple copies of the afsR2 gene, which activates actinorhodin synthesis, result in the ability of S. lividansto also synthesize large amounts of actinorhodin. Here we report that the phenotypic property that historicially distinguishes these two Streptomycesspecies is determined conditionally by the carbon source used for culture. Whereas growth on glucose repressed actinorhodin production in S. lividans, culture on solid media containing glycerol as the sole carbon source dramatically increased the expression of afsR2 mRNA---leading to extensive actinorhodin synthesis by S. lividansand obliterating its phenotypic distinction from S. coelicolor. afsR2 transcription under these conditions was developmentally regulated, rising sharply at the time of aerial mycelium formation and coinciding temporally with the onset of actinorhodin production. Our results, which identify media-dependent parallel pathways that regulate actinorhodin synthesis in S. lividans, demonstrate carbon source control of actinorhodin production through the regulation of afsR2 mRNA synthesis. The nucleotide sequences of afsR2 revealed two putative important domains; the domain containing direct repeats in the middle and the domain homologous to sigma factor sequence in the C-terminal end. In this work, we constructed various sized afsR2-derivatives and compared the actinorhodin stimulating effects in S. lividans TK21. The experimental data indicate that the domain homologous to sigma factor sequence in the C-terminal end of afsR2 plays a critical role as an antibiotic stimulating function. In addition, we also observed that the single copy integration of afsR2 regulatory gene into S. lividans TK21 chromosome significantly activates antibiotic overproduction.

  • PDF

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

Stimulation of Actinorhodin Production by Streptomyces lividans with Chromosomally-Integrated Antibiotic Regulatory Gene, afsR2

  • 김창영;박현주;김응수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.577-581
    • /
    • 2003
  • Streptomyces lividans is one of the most commonly-used streptomyetes strain as a molecular cloning and expression host. Unlike its close relative S. coelicolor, however, S. lividans rarely produces secondary metabolite such as actinorhodin in a typical glucose-containing culture condition due to insufficient expression of some antibiotic regulatory genes including afsR2. Although multiple copies of afsR2 or a glycerol-specific culture condition stimulated actinorhodin production in S. lividans, both failed to stimulate actinorhodin production in S. lividans cultured in a typical glucose-containing medium. To generate a culture-condition-independent actinorhodin-overproducing S. lividans strain the afsR2 gene was integrated into the S. lividans TK21 chromosome via homologous recombination, followed by the genetic confirmation. This S. lividans strain produced a significant amount of actinorhodin in both glucose-containing liquid and plate cultures, with higher actinorhodin productivity compared to the S. lividans containing multiple copies of afsR2. These results suggest that a chromosomal integration of a single copy of an antibiotic regulatory gene is a promising method for the development of a stable antibiotic-overproducing streptomycetes strain.

  • PDF

Stimulation of Actinorhodin Production by Streptomyces lividans with a Chromosomally-Integrated Antibiotic Regulatory Gene afsR2

  • Kim, Chang-Young;Park, Hyun-Joo;Yoon, Yeo-Joon;Kang, Han-Young;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1089-1092
    • /
    • 2004
  • An actinorhodin nonproducing Streptomyces lividans was converted to an actinorhodin overproducer through a single chromosomal integration of an antibiotic regulatory gene, afsR2. This strain exhibited early actinorhodin production and an average of 37.5% higher productivity than the S. lividans containing multiple copies of afsR2 plasmid in a glucose-containing liquid culture.

Identification and Functional Characterization of an afsR Homolog Regulatory Gene from Streptomyces venezuelae ATCC 15439

  • Maharjan, Sushila;Oh, Tae-Jin;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.121-127
    • /
    • 2009
  • Sequencing analysis of a 5-kb DNA fragment from Streptomyces venezuelae ATCC 15439 revealed the presence of one 3.1-kb open reading frame(ORF), designated as afsR-sv. The deduced product of afsR-sv(1,056 aa) was found to have high homology with the global regulatory protein AfsR. Homology-based analysis showed that aftR-sv represents a transcriptional activator belonging to the Streptomyces antibiotic regulatory protein(SARP) family that includes an N-terminal SARP domain containing a bacterial transcriptional activation domain(BTAD), an NB-ARC domain, and a C-terminal tetratricopeptide repeat domain. Gene expression analysis by reverse transcriptase PCR(RT-PCR) demonstrated the activation of transcription of genes belonging to pikromycin production, when aftR-sv was overexpressed in S. venezuelae. Heterologous expression of the aftR-sv in different Streptomyces strains resulted in increased production of the respective antibiotics, suggesting that afsR-sv is a positive regulator of antibiotics biosynthesis.

Avermectin을 생산하는 Streptomyces avermitilis에서의 Proteomics-guided AfsR2-dependent 유전자의 발현 (Functional Expression of Proteomics-guided AfsR2-dependent Genes in Avermectin-producing Streptomyces avermitilis)

  • 김명근;박현주;임종혁;김응수
    • 한국미생물·생명공학회지
    • /
    • 제34권3호
    • /
    • pp.211-215
    • /
    • 2006
  • S. lividans에서 클로닝된 조절유전자인 afsR2를 과발현시 나타나는 up-regulated protein과 down-regulated protein 관련 유전자들을 proteomics 방법으로 선별하였고[3], 이를 방선균 발현벡터인 pSE34를 이용하여 제작된 pPNP, pGPD를 S. avermitilis에 형질전환시켜 avermectin 및 이차대사산물의 생산량 차이를 비교 분석하였다. 그 결과 up-regulated protein으로 예상되던 PNP는 wild-type S. avermitilis에서만 제한적으로 avermetin-type 대사산물의 생산성 향상을 촉진시켰으며, 이와 반대로 down-regulated protein으로 예상되었던 GPD는 avermectin-type 대사산물의 생산량을 wild type S. avermitilis에서는 4배, over-producer S. avermitilis에서는 2.5배 증가시켰다. 본 연구결과는, 방선균 조절 단백질들이 이차대사산물의 종류 및 생합성 기작에 따라 전혀 다르게 작용될 수 있음을 암시하며, 향후 이들 조절 단백질들에 대한 보다 구체적인 분자수준에서의 연구 필요성을 제시하고 있다.

Enhanced Clavulanic Acid Production in Streptomyces clavuligerus NRRL3585 by Overexpression of Regulatory Genes

  • Hung, Trinh Viet;Ishida, Kenji;Parajuli, Niranjan;Liou, Kwang-Kyoung;Lee, Hei-Chan;Sohng, Jae-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.116-120
    • /
    • 2006
  • We constructed four recombinant plasm ids to enhance the production of clavulanic acid (CA) in Streptomyces clavuligerus NRRL3585: (1) pIBRHL1, which includes ccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) pIBRHL2, containing claR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containing afsR-p, a global regulatory gene from Streptomyces peucetius; and (4) pKS, which harbors all of the genes (ccaR/ claR/ afsR-p). The plasmids were expressed in S. clavuligerus NRRL3585 along with the $ermE^*$ promoter. All of them enhanced the production of CA; 2.5-fold overproduction for pIBRHL1, 1.5-fold for pIBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.