Browse > Article

Proteomics-driven Identification of Putative AfsR2-target Proteins Stimulating Antibiotic Biosynthesis in Streptomyces lividans  

Kim Chang-Young (Department of Biological Engineering, Inha University)
Park Hyun-Joo (SongWon Envichem Inc.,)
Kim Eung-Soo (Department of Biological Engineering, Inha University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.3, 2005 , pp. 248-253 More about this Journal
Abstract
AfsR2, originally identified from Streptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression of afsR2 significantly induced antibiotic production as well as the sporulation of S. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-type S. lividans and the afsR2-integrated actinorhodin overproducing strain. The 20 gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these two S. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine penta phosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes in Streptomyces species.
Keywords
AfsR2; proteomics; antibiotic regulation; Streptomyces;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 11
연도 인용수 순위
1 Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim (2004) Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
2 Oakley, B. R., D. R. Kirsch, and N. R. Morris (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363   DOI   ScienceOn
3 Folcher, M., H. Gaillard, L. T. Nguyen, K. T. Nguyen, P. Lacroix, N. Bamas-Jacques, M. Rinkel, and C. J. Thompson (2001) Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276: 44297-44306   DOI   ScienceOn
4 Cashel, M., D. R. Gentry, V. J. Hernandez, and D. Vinella (1996) The stringent response. pp. 1458-1496. In: R. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Rezniko, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. , Washington, D.C., USA
5 Martinez-Costa, O. H., P. Arias, N. M. Romero, V. Parro, R. P. Mellado, and F. Malpartida (1996) A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J. Biol. Chem. 271: 10627-10634   DOI   ScienceOn
6 Glass, R. E., S. T. Jones, and A. Ishihama (1986) Genetic studies on the $\beta$ subunit of Escherichia coli RNA polymerase. VII. RNA polymerase is a target for ppGpp. Mol. Gen. Genet. 203: 265-268   DOI   ScienceOn
7 Kelly, K. S., K. Ochi, and G. H. Jones (1991) Pleiotropic effects of a relC mutation in Streptomyces antibioticus. J. Bacteriol. 173: 2297-2300   DOI
8 Kim, E.-S., H.-J. Hong, C.-Y. Choi, and S. N. Cohen (2001) Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203   DOI   ScienceOn
9 Chater, K. F. (1990) Multilevel regulation of Streptomyces differentiation. Trends Genet. 5: 372-377   DOI   ScienceOn
10 Kim J. H., J. S. Lim, and S. W. Kim (2004) The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioprocess Eng. 9: 459-464   DOI   ScienceOn
11 Yoon, Y. J., B. J. Beck, B. S. Kim, H.-Y. Kang, and K. A. Reynolds (2002) Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9: 203-214   DOI   ScienceOn
12 Champness, W. C., P. Riggle, T. Adamidis, B. Kenney, and D. Aceti (1993) Genetic elements involved in global antibiotic regulation in Streptomyces coelicolor. pp. 227- 233. In: R. Baltz et al. (eds.). Industrial Microorganisms: Basic and Applied Molecular Genetics. American Society for Microbiology, Washington D.C., USA
13 Hara, O., S. Horinouchi, T. Uozumi, and T. Beppu (1983) Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129: 2939-2944
14 Chung, H. J., J. H. Choi, E. J. Kim, Y. H. Cho, and J. H. Roe (1999) Negative regulation of the gene for Fecontaining superoxide dismutase by an Ni-responsive factor in Streptomyces coelicolor. J. Bacteriol. 181: 7381- 7384
15 Ochi, K. (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: Signifi cance of the stringent response (ppGpp) and GTP content in relation to A factor. J. Bacteriol. 169: 3608-3616   DOI
16 Lee, K. J. and J. Y. Lim (2004) Optimized conditions for high erythritol production by Penicillium sp. KJ-UV29, mutant of Penicillium sp. KJ81. Biocechnol. Bioprocess Eng. 8: 173-178
17 Sprusansky, O., B. Rezuchova, D. Homerova, and J. Kormanec (2001) Expression of the gap gene encoding glyceraldehyde- 3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators. Microbiology 147: 1291-1301   DOI
18 Kormanec, J., A. Lempel'ova, R. Novakova, B. Rezuchova, and D. Homerova (1997) Expression of the Streptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose. Microbiology 143: 3555-3561   DOI   ScienceOn
19 Nakamura Y., C. Asada, and T. Sawada (2004) Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biocechnol. Bioprocess Eng. 8: 37-40
20 Vogtli, M., P. C. Chang, and S. N. Cohen (1994) afsR2: A previously undeleted gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14: 643-653   DOI   ScienceOn
21 Champness, W. C. and K. F. Chater (1994) Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. pp. 61-93. In: P. J. Piggot, C. P. Moran Jr., and P. Youngman (eds.). Regulation of Bacterial Differentiation. American Society for Microbiology, Washington D.C., USA
22 Horinouchi, S., O. Hara, and T. Beppu (1983) Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Bacteriol. 155: 1238-1248
23 Stein, D. and S. N. Cohen (1989) A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different development mutants. J. Bacteriol. 171: 2258-2261   DOI
24 Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S. K. Hong, K. Miyake, and T. Beppu (1992) Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95: 49-56   DOI   ScienceOn
25 Chakraburtty, R. and M. Bibb (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179: 5854-5861   DOI   PUBMED
26 Sohlberg B., J. Huang, and S. N. Cohen (2003) The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J. Bacteriol. 185: 7273-7278   DOI   ScienceOn
27 Shevchenko, A., M. Wilm, O. Vorm, and M. Mann (1996) Mass spectrometric sequencing of proteins from silverstained polyacrylamide dels. Anal. Chem. 68: 850-858   DOI   ScienceOn
28 Vomastek, T., R. Nadvornik, J. Janecek, Z. Technikova, J. Weiser, and P. Branny (1998) Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties. Eur. J. Biochem. 257: 55-61   DOI   ScienceOn
29 Matsumoto, A., H. Ishizukz, T. Beppu, and S. Horinouchi (1995) Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica. 9: 37- 43   DOI   ScienceOn
30 Hopwood, D. A. (1987) Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B. 235: 2257-2269
31 Umeyama, T., A. Naruoka, and S. Horinouchi (2000) Genetic and biochemical characterization of a protein phosphatase with dual substrate specificity in Streptomyces coelicolor A3(2). Gene 258: 55-62   DOI   PUBMED   ScienceOn