Browse > Article

Identification and Functional Characterization of an afsR Homolog Regulatory Gene from Streptomyces venezuelae ATCC 15439  

Maharjan, Sushila (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University)
Oh, Tae-Jin (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University)
Lee, Hei-Chan (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University)
Sohng, Jae-Kyung (Institute of Biomolecule Reconstruction(iBR), Department of Pharmaceutical Engineering, SunMoon University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.2, 2009 , pp. 121-127 More about this Journal
Abstract
Sequencing analysis of a 5-kb DNA fragment from Streptomyces venezuelae ATCC 15439 revealed the presence of one 3.1-kb open reading frame(ORF), designated as afsR-sv. The deduced product of afsR-sv(1,056 aa) was found to have high homology with the global regulatory protein AfsR. Homology-based analysis showed that aftR-sv represents a transcriptional activator belonging to the Streptomyces antibiotic regulatory protein(SARP) family that includes an N-terminal SARP domain containing a bacterial transcriptional activation domain(BTAD), an NB-ARC domain, and a C-terminal tetratricopeptide repeat domain. Gene expression analysis by reverse transcriptase PCR(RT-PCR) demonstrated the activation of transcription of genes belonging to pikromycin production, when aftR-sv was overexpressed in S. venezuelae. Heterologous expression of the aftR-sv in different Streptomyces strains resulted in increased production of the respective antibiotics, suggesting that afsR-sv is a positive regulator of antibiotics biosynthesis.
Keywords
aftR-sv; regulatory gene; reverse transcriptase PCR; SARP family; Streptomyces venezuelae;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Arias, P., M. A. Fernández-Moreno, and F. Malpartida. 1999. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J. Bacteriol. 181: 6958-6968   PUBMED
2 Horinouchi, S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467   DOI   ScienceOn
3 Kim, E. S., H. J. Hong, C. Y. Choi, and S. N. Cohen. 2001. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203   DOI   ScienceOn
4 Lee, S. K., J. W. Park, J. W. Kim, W. S. Jung, S. R. Park, C. Y. Choi, et al. 2006. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Nat. Prod. 69: 847-849   DOI   ScienceOn
5 Schreiber, V. and E. Richet. 1999. Self-association of the Escherichia coli transcription activator MalT in the presence of maltotriose and ATP. J. Biol. Chem. 19: 33220-33226
6 Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206   DOI   PUBMED   ScienceOn
7 Xue, Y., L. Zhao, H. W. Liu, and D. H. Sherman. 1998. A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: Architecture of metabolic diversity. Proc. Natl. Acad. Sci. USA 95: 12111-12116   DOI   ScienceOn
8 Kim, C. Y., H. J. Park, and E. S. Kim. 2006. Functional dissection of sigma-like domain in antibiotic regulatory gene, afsR2 in Streptomyces lividans. J. Microbiol. Biotechnol. 16: 1477-1480   과학기술학회마을   ScienceOn
9 Umeyama, T., P. C. Lee, K. Ueda, and S. Horinouchi. 1999. An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145: 2281-2292   PUBMED   ScienceOn
10 Im, J. H., M. G. Kim, and E. S. Kim. 2007. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J. Microbiol. Biotechnol. 17: 534-538   과학기술학회마을   PUBMED   ScienceOn
11 Hopwood, D. A., K. F. Chater, and M. J. Bibb. 1995. Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28: 65-102   PUBMED
12 Umeyama, T. and S. Horinouchi. 2001. Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J. Bacteriol. 183: 5506-5512   DOI   ScienceOn
13 Bibb, M. 1996. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142: 1335-1344   DOI   ScienceOn
14 Rajkarnikar, A., H. J. Kwon, Y. W. Ryu, and J. W. Suh. 2007. Two threonine residues required for role of AfsKav in controlling morphogenesis and avermectin production in Streptomyces avermitilis. J. Microbiol. Biotechnol. 17: 1563-1567   PUBMED
15 Umeyama, T., P. C. Lee, and S. Horinouchi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59: 419-425   DOI   ScienceOn
16 Floriano, B. and M. Bibb. 1996. afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 21: 385-396   DOI   ScienceOn
17 Pageni, B. B., T. J. Oh, K. Liou, Y. J. Yoon, and J. K. Sohng. 2008. Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4,6-dideoxy-L-glucose from Streptomyces Venezuelae YJ003-OTBP3. J. Microbiol. Biotechnol. 18: 88-94   과학기술학회마을   PUBMED
18 Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3 Ed. Cold Spring Harbor Laboratory Press, New York, U.S.A
19 Parajuli, N., H. T. Viet, K. Ishida, H. T. Tong, H. C. Lee, K. Liou, and J. K. Sohng. 2005. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res. Microbiol. 156: 707-712   DOI   ScienceOn
20 Tanaka, A., Y. Takano, Y. Ohnishi, and S. Horinouchi. 2007. AfsR recruits RNA polymerase to the afsS promoter: A model for transcriptional activation by SARPs. J. Mol. Biol. 369: 322-333   DOI   ScienceOn
21 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
22 Richet, E. and O. Raibaud. 1989. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J. 8: 981-987   PUBMED   ScienceOn
23 Wilson, D. J., Y. Xue, K. A. Reynolds, and D. H. Sherman. 2001. Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J. Bacteriol. 183: 3468-3475   DOI   ScienceOn
24 Maezawa, I., A. Kinumaki, and M. Suzuki. 1978. Biological glycosidation of macrolide aglycones. II. Isolation and characterization of desosaminyl-platenolide I. J. Antibiot. (Tokyo) 31: 309-318   DOI   PUBMED
25 Bystrykh, L. V., M. A. FernáNdez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related '"blue pigments'" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244   DOI   PUBMED
26 Kieser, T., J. B. Mervyn, B. J. Mark, C. F. Keith, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation Norwich, U.K
27 Perlman, D. 1953. Colorimetric method for determination of aureomycin, carbomycin, erythromycin, and terramycin in aqueous solution. Science 118: 628-629   DOI   PUBMED
28 Sheldon, P. J., S. B. Busarow, and C. R. Hutchinson. 2002. Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol. Microbiol. 44: 449-460   DOI   ScienceOn
29 Tomono, A., M. Mashiko, T. Shimazu, H. Inoue, H. Nagasawa, M. Yoshida, Y. Ohnishi, and S. Horinouchi. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. (Tokyo) 59: 117-123   DOI   ScienceOn
30 Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S. K. Hong, and Y. K. Chang. 2007. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 76: 1119-1130   DOI   ScienceOn
31 Lee, P. C., T. Umeyama, and S. Horinouchi. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43: 1413-1430   DOI   ScienceOn
32 Demain, A. L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52: 455-463   DOI   PUBMED   ScienceOn