Browse > Article

Functional Analysis of an Antibiotic Regulatory Gene, afsR2 in S. lividans through DNA microarray System  

Kim, Chang-Young (Department of Biological Engineering, Inha University)
Noh, Jun-Hee (Department of Biological Engineering, Inha University)
Lee, Han-Na (Department of Biological Engineering, Inha University)
Kim, Eung-Soo (Department of Biological Engineering, Inha University)
Publication Information
KSBB Journal / v.24, no.3, 2009 , pp. 259-266 More about this Journal
Abstract
AfsR2 in Streptomyces lividans, a 63-amino acid protein with limited sequence homology to Streptomyces sigma factors, has been known for a global regulatory protein stimulating multiple antibiotic biosynthetic pathways. Although the detailed regulatory mechanism of AfsK-AfsR-AfsR2 system has been well characterized, very little information about the AfsR2-dependent down-stream regulatory genes were characterized. Recently, the null mutant of afsS in S. coelicolor (the identical ortholog of afsR2) has been characterized through DNA microarray system, revealing that afsS deletion regulated several genes involved in antibiotic biosynthesis as well as phosphate-starvation. Through comparative DNA microarray analysis of afsR2-overexpressed S. lividans, here we also identify several afsR2-dependent genes involved in phosphate starvation, morphological differentiation, and antibiotic regulation in S. lividans, confirming that the AfsR2 plays an important pleiotrophic regulatory role in Streptomyces species.
Keywords
afsR2; Streptomyces lividans; DNA-microarray system; sigma factor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sevcikova B. and J. Kormanec (2004), Differential production of two antibiotics of Streptomyces, coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181, 384-389   DOI   ScienceOn
2 Kim E. S., H. J. Hong, C. Y. Choi, and S. N. Cohen (2001), Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of ajsR2 gene transcription. J. Bacteriol. 183, 2198-2203   DOI   ScienceOn
3 Wei, L., P. J. Karthik, C. Salim, M. Sarika, G. Frank, Y. S. Kyung, D. H. Sherman, and W. S. Hu (2008), Genome-wide transcriptiome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2), BMC Genomics. 9, 56-70   DOI   PUBMED   ScienceOn
4 Bemstein J. A., A. B. Khodursky, P. H. Lin, D. Lin-Chao, and S. N. Cohen (2002), Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. U.S.A. 99, 9697-9702   DOI   ScienceOn
5 Fink D., N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels (2002), Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 46, 331-347   DOI   ScienceOn
6 Mazurakova V., B. evcikova, B. Rezuchova, and J. Kormanec (2006), Cascade of sigma factors in stretomycetes: identification of a new extracytoplasmic function sigma factor sigma J that is under the control of the stress-response sigma factor sigmaH in Streptomyces coelicolor A3(2). Arch. Microbiol. 186(6), 435-446   DOI   ScienceOn
7 Geiman D. E., T. R. Raghunand, N. Agarwal, and W. R. Bishai (2006), Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob. Agents. Chemother. 50(8), 2836-41   DOI   ScienceOn
8 Flardh K., K. C. Findlay, and K. F. Chater (1999), Association of early sporulation genes with suggested developmental decision points in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9), 2229-2243   PUBMED   ScienceOn
9 Rodriguez, E., Z. Hu, S. Ou, Y. Volchegursky, C. R. Hutchinson, and R. McDaniel (2003), Rapid engineering of polyketide overproduction by gene transfer to industrial1y optimized strains, J. lnd. Microbiol. Biotechnol. 30(8), 480-8   DOI   ScienceOn
10 Hutchinson, C. R. and A. L. Colombo (1999), Genetic engineering of doxorubicin production in Streptomyces peucetius, a review. J. lnd. Microbiol. Biotechnol. 23, 647-652   DOI   ScienceOn
11 Fischer R. J., S. Oehmcke, U. Meyer, M. Mix, K. Schwarz, T. Fiedler, and H. Bahl (2006), Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188(15), 5469-5478   DOI   ScienceOn
12 Petkovic', H., J. Cullum, D. Hranueli, I. S. Hunter, N. Peric'-Concha, J. Pigac, A. Thamchaipenet, D. Vujaklija and P. F. Long (2006), Genetics of Streptomyces rimosus, theOxytetracycline Producer, Microbiol. Mol. biol. review. 70(3), 704-728   DOI   ScienceOn
13 Kang S. H., J. Huang, H. N. Lee, Y. A. Hur, S. N. Cohen, and E. S. Kim (2007), Interspecies DNA Microarray Analysis Identifies WblA as a Pleiotropic Down- Regulator of Antibiotic Biosynthesis in Streptomyces. J. Bacteriol. 189(11), 4315-4319   DOI   ScienceOn
14 Reuther J. and W. W ohlleben (2007), Nitrogen metabolism in streptomyces coelicolor: transcriptional and post-translational regulation. J. Mol. Microbiol. Biotechnol. 12, 139-146   DOI   ScienceOn
15 Vogtli M., P. C. Chang, and S. N. Cohen (1994), afsR2: a previously undetected gene encoding a 63-aminoacid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14(4), 643-653   DOI   ScienceOn
16 Paget M. S., L. Chamberlin, A. Atrih, S. J. Foster, and M. J. Buttner (1999), Evidence that the extracytoplasmic function sigma factor $\sigma^E$ is required for normal cell wall structure in Streptomyces coelicolor A3(2), J. Bacteriol. 181, 204-211   PUBMED
17 Lum, A. M., J. Huang, C. R. Hutchinson, and C. M. Kao (2004), Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays, Metab. Eng. 6, 186-196   DOI   ScienceOn
18 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim (2005), Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition. J. Microbiol Biotechn. 15, 66-71
19 Femandez-Moreno M. A., A. J. Martin-Triana, E. Martinez, J. Niemi, H. M. Kieser, D. A. Hopwood, and F. Malpartida (1992), abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174(9), 2958-2967   DOI   PUBMED
20 Jayapal K. P., W. Lian, G. Frank, D. H. Sherman, and W. S. Hu (2007), Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans. BMC Genomics. 8, 229   DOI   PUBMED   ScienceOn
21 Cho Y. H., E. J. Lee, B. E. Ahn, and J. H. Roe (2001), SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol. Microbiol. 42, 205-214   DOI   ScienceOn
22 Lee Y., K. Kim, J. W. Suh, S. Rhee, and Y. Lim (2007) Binding study of AfsK, a Ser/Thr kinase from Streptomyces coelicolor A3(2) and S-adenosyl-L-methionine. FEMS Microbiol. Lett. 266, 236-240   DOI   ScienceOn
23 Diaz M., A. Esteban, J. M. Femandez-Abalos, and R. I. Santamaria (2005), The high-affinity phosphatebinding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiol. 151, 2583-2592
24 Rodriguez-Garcia, A, S. Barreiro, F. Santos-Beneit, A. Sola-Landa, and J. F. Martin (2007), Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a phoP mutant. Proteomics. 7, 2410-2429   DOI   ScienceOn
25 Kim C. Y., H. J. Park, and E. S. Kim (2005), Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis in Streptomyces lividans. Biotechnol. Bioprocess Eng. 10, 248-263   DOI   ScienceOn
26 Shen X. L., H. J. Dong, X. P. Hou, W. J. Guan, and Y. Q. Li (2008), FtsY affects sporulation and antibiotic productionby whiH in Streptomyces coelicolor. Curr. Microbiol. 56(1), 61-65   DOI   ScienceOn
27 Kim C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim (2004), Stimulation of actinorhodin production by stretomyces lividans with a chromosomal-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14(5), 1089-1092   ScienceOn
28 Zhang, H., Y. Wang, and B. A. Pfeifer (2008), Bacterial hosts for natural product production. Mol. Pharm. 5(2), 212-225   DOI   ScienceOn
29 Lee J, Y. Hwang, S. Kim, E. Kim, and C. Choi (2000), Effect of a global regulatory gene, afsR2, from Streptomyces lividans on avermectin production in Streptomyces avermitilis. J. Biosci Bioeng. 89(6), 606-608   DOI   ScienceOn
30 Alderson G., D. A. Ritchie, C. Cappellano, R. H. Cool, N. M. Ivanova, A. S. Huddleston, C. S. Flaxman, V. Kristufek, and A. Lounes (1993), Physiology and genetics of antibiotic production and resistance. Res. Microbiol. 144(8), 665-672   DOI   ScienceOn
31 Huang, J., C. J. Lih, K. H. Pan, and S. N. Cohen (2001), Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15, 3183-3192   DOI   ScienceOn
32 Braibant M., P. Lefevre, L. de Wit, P. Peirs, J. Ooms, K. Huygen, A. B. Andersen, and J. Content (1996), A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene. 176, 171-176   DOI   PUBMED   ScienceOn
33 Kim C. Y., H. J. Park, and E. S. Kim (2006), Functional dissεction of sigma-like domain in antibiotic regulatory gene, afsR2 in Streptomyces lividans. J. Microbiol Biotechnol. 16, 1477-1480