Functional Expression of Proteomics-guided AfsR2-dependent Genes in Avermectin-producing Streptomyces avermitilis

Avermectin을 생산하는 Streptomyces avermitilis에서의 Proteomics-guided AfsR2-dependent 유전자의 발현

  • Kim Myung-Gun (Department of Biological Engineering, Inha University) ;
  • Park Hyun-Joo (Department of Biological Engineering, Inha University) ;
  • Im Jong-Hyuk (Department of Biological Engineering, Inha University) ;
  • Kim Eung-Soo (Department of Biological Engineering, Inha University)
  • Published : 2006.09.01

Abstract

AfsR2 is a global regulatory protein involved in the stimulation of secondary metabolite biosynthesis in various Streptomyces species including avermectin-producing S. avermitilis. Among several AfsR2-dependent genes identified from the comparative proteomics, the polyribonucleotide nucleotidyltransferase (PNP) and the glyceraldehyde-3-phosphate dehydrogenase (GPD) genes were previously proposed to regulate the actinorhodin production in S. lividans upon afsR2 over-expression positively and negatively, respectively. To show the biological significance of the PNP and GPD genes in the S. avermitilis strains, these two genes were functionally expressed in both the wild-type and the avermectin-overproducing mutant strains. The PNP gene expression stimulated secondary metabolite production in the wild-type S. avermitilis ATCC31267, but not in the avermectin-overproducing S. avermitilis ATCC31780. Interestingly, the GDP gene expression stimulated secondary metabolite production by 4-fold in the wild-type S. avermitilis ATCC31267 and by 2.5-fold in the avermectin-overproducing S. avermitilis ATCC31780, respectively. These results suggest that the biological significance of the afsR2-dependent PNP and GPD gene expressions on antibiotic biosynthetic regulation could be significantly different depending on Streptomyces species.

S. lividans에서 클로닝된 조절유전자인 afsR2를 과발현시 나타나는 up-regulated protein과 down-regulated protein 관련 유전자들을 proteomics 방법으로 선별하였고[3], 이를 방선균 발현벡터인 pSE34를 이용하여 제작된 pPNP, pGPD를 S. avermitilis에 형질전환시켜 avermectin 및 이차대사산물의 생산량 차이를 비교 분석하였다. 그 결과 up-regulated protein으로 예상되던 PNP는 wild-type S. avermitilis에서만 제한적으로 avermetin-type 대사산물의 생산성 향상을 촉진시켰으며, 이와 반대로 down-regulated protein으로 예상되었던 GPD는 avermectin-type 대사산물의 생산량을 wild type S. avermitilis에서는 4배, over-producer S. avermitilis에서는 2.5배 증가시켰다. 본 연구결과는, 방선균 조절 단백질들이 이차대사산물의 종류 및 생합성 기작에 따라 전혀 다르게 작용될 수 있음을 암시하며, 향후 이들 조절 단백질들에 대한 보다 구체적인 분자수준에서의 연구 필요성을 제시하고 있다.

Keywords

References

  1. Balt, R. H. 1994. Gene Expression in Recombinant Microorganisms, Chapter 6 : Gene Expression in Recombinant Streptomyces, p337- 356
  2. Burg, R. W., B. M. Miller, E. E. Baker, J. Birnbaum, S. Currie, R. Hartman, Y. L. Kong, R. L. Monaghan, R. Oiwa, and S. Omura. 1979. Avermectins, New Family of Potent Anthelmintic Agents; Producing Organism and Fermentation Antimicrob. Agents. Chemother. 15: 361-367
  3. Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2005. Proteomics-driven Identification of Putative AfsR2-target Protein Stimulating Antibiotic Biosynthesis in Streptomyces lividans Biotechnol. Bioproc. Eng. 10: 248-253 https://doi.org/10.1007/BF02932021
  4. Goodfellow, M. and S. T. Williams 1984. The biology of the actinomycetes, Academic Press, N.Y. Chapter 3: Morphology, p166-170
  5. Hopwood, D.W., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, J. M. Ward, and H. Shrempf. 1985. Genetic Manipulation of Streptomyces. A Laboratory Manual. Norwich, UK: The John Innes Foundation
  6. Ikeda, H. and S. Omura. 1998. Avermectin Biosynthesis Chem. Rev. 97: 2591- 2609 https://doi.org/10.1021/cr960023p
  7. Ikeda, H., H. Kotaki, and S. Omura. 1987. Genetic Studies of Avermectin Biosynthesis in Streptomyces avermitilis. J. Bacteriol. 169: 5615-5621
  8. Ikeda, H., T. Nonomiya, M. Usami, T. Ohta, and S. Omura. 1999. Organization of the Biosynthetic Gene Cluster for the Polyketide Anthelmintic Macrolide Avermectin in Streptomyces avermitilis. Proc. Natl. Acad. Sci. USA 96: 9509-9514
  9. Ikeda, H., Y. Takada, C. H. Pang, K. Matsuzaki, H. Tanaka, and S. Omura. 1995a. Direct Production of 5-oxo Derivatives of Avermectins by a Recombinant Strain of Streptomyces avermitilis. J. Antibiotics 48: 95-97
  10. Lee, J. Y., Y. S. Hwang, S. S. Kim, E.-S. Kim, and C. Y. Choi. 2000. Effect of a Global Regulatory Gene, afsR2, from Streptomyces lividans on Avermectin Production in Streptomyces avermitilis. J. Biosci. Bioeng. 89: 606-608 https://doi.org/10.1016/S1389-1723(00)80065-1
  11. MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis Genes Required for Avermectin Biosynthesis Utilizing a Novel Integration Vector. Gene 111: 61-68 https://doi.org/10.1016/0378-1119(92)90603-M
  12. MacNeil, T., K. M. Gewain, and D. J. MacNeil. 1993. Deletion Analysis of the Avermectin Biosynthetic Genes of Streptomyces avermitilis by Gene Cluster Displacement. J. Bacteriol. 175: 2552-2563
  13. Kim, E.-S., K. D. Cramer, A. L. Shreve, and D. H. Sherman. 1995. Heterologous Expression of an Engineered Biosynthetic Pathway: Functional Dissection Type II Polyketide Synthase Components in Streptomyces species. J. Bacteriol. 177: 1202-1207
  14. Martin, V., P. C. Chang, and S. N. Cohen. 1994. afsR2: A Previously Undetected Gene Encoding a 63-amino-acid Protein that Stimulates Antibiotic Production in Streptomyces lividans. Mol. Microbiol. 14(4): 643-653 https://doi.org/10.1111/j.1365-2958.1994.tb01303.x
  15. Stein, D. and S. N. Cohen. 1989. A Cloned Regulatory Gene of Streptomyces lividans can Suppress the Pigment Deficient Phenotype of Different Development Mutants. J. Bacteriol. 171: 2258- 2262
  16. Stohl, W. R. 1997. Biotechnology in Antibiotics, Chapter 1: Industrial Antibiotics: Today and the Future, Marcel Dekker, Inc., N.Y., p1-11
  17. Horinouchi, S. 2003. AfsR as an Integrator of Signals that are Sensed by Multiple Serine/Threonine Kinase in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467 https://doi.org/10.1007/s10295-003-0063-z
  18. Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete Genome Sequence and Comparative Analysis of the Industrial Microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 505-506 https://doi.org/10.1038/nbt0503-505
  19. Gaisser, S., L. Kellenberger, A. L. Kaja, A. J. Weston, R. E. Lill, G. Wirtz, S. G. Kendrew, L. Low, R. M. Sheridan, B. Wilkinson, I. S. Galloway, K. Stutzman-Engwall, H. A. McArthur, J. Staunton, and P. F. Leadlay. 2003. Direct Production of Ivermectin-like Drugs after Domain Exchange in the Avermectin Polyketide Synthase of Streptomyces avermitilis ATCC31272. Org. Biomol. Chem. 1: 2840-2847 https://doi.org/10.1039/b304022d
  20. Kormanec, J., A. Lempelova, M. Farkasovsky, and D. Homerova. 1995. Cloning, Sequencing and Expression in Escherichia coli of a Streptomyces aureofaciens Gene Encoding Glyceraldehyde-3-phosphate Dehydrogenase. Gene 165: 77-80 https://doi.org/10.1016/0378-1119(95)00510-D
  21. Kang, S. H., M. G. Kim, H.-J. Park, and Kim, E.-S. 2005. Expression Profiles of Streptomyces Doxorubicin Biosynthetic Gene Cluster Using DNA Microarray System. Korean J. Biotechnol. Bioeng. 20: 220-227
  22. Bralley, P. and G. H. Jones 2004. Organization and Expression of the Polynucleotide Phosphorylase Gene (pnp) of Streptomyces: Processing of pnp Transcripts in Streptomyces antibioticus. J. Bacteriol. 186: 3160-3172 https://doi.org/10.1128/JB.186.10.3160-3172.2004
  23. Hwang, Y. S., E.-S. Kim, S. Biro, and C. Y. Choi 2003. Cloning and Analysis of a DNA Fragment Stimulating Avermectin Production in Various Streptomyces avermitilis strains. Appl. Environ. Microbiol. 69: 1263-1269 https://doi.org/10.1128/AEM.69.2.1263-1269.2003
  24. Yoon, Y. J., E.-S. Kim, Y. S. Hwang and C. Y. Choi 2004. Avermectin: Biochemical and Molecular Basis of Its Biosynthesis and Regulation. Appl. Microbiol. Biotechnol. 63: 626-34 https://doi.org/10.1007/s00253-003-1491-4