• Title/Summary/Keyword: Aerosol analysis

Search Result 452, Processing Time 0.027 seconds

Sensitivity Analysis by Using Global Imager for Retrieval of Biomass Burning Aerosols

  • Lee, Hyun-Jin;Kim, Jae-Hwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 2011
  • The purpose of this study is to evaluate the strength of the near-UV wavelength of 380 nm relative to visible and near-IR bands, and to find the suitable wavelength for detecting aerosols by using the Global Imager (GLI) sensor aboard the Advanced Earth Observing Satellite-II (ADEOS-II). Sensitivity analysis is performed for the retrieval of biomass burning aerosols by employing the radiative transfer model Rstar5b. It is determined that background surface reflectance in the blue band is similar to that in the near-UV band, and that wavelengths in the blue bands are more sensitive to the Aerosol Optical Thickness (AOT) than wavelengths in the near-UV band. The Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) is used in the indirect method used for aerosol retrieval, and the wavelength pair 380 nm and 460 nm is determined to be the most sensitive to the AOT. The results of this study suggest that wavelengths in the blue bands are suitable for detecting biomass burning aerosols over the Korean peninsula.

Numerical Analysis on Energy Consumption of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지소비 수치해석)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kim, Hyoung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1306-1311
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data.

  • PDF

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

The Meteorological, Physical, and Chemical Characteristics of Aerosol during Haze Event in May 2003 (2003년 5월의 연무 관측시 에어로졸의 기상 · 물리 · 화학 특성)

  • Lim, Ju-Yeon;Chun, Young-Sin;Cho, Kyoung-Mi;Lee, Sang-Sam;Shin, Hye-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.697-711
    • /
    • 2004
  • Severe haze, mist, and fog phenomena occurred in the central part of Korea during 15~25 May 2003 resulted in poor visibility and air quality. When these phenomena occurred, Korean peninsula was under the effects of anticyclone. The atmosphere was stable, and wind speed was so weak. Under this meteorological conditions, air quality was worse and worse. The characteristics of aerosol in Seoul, Incheon, and Gosan (Jeju) during this period are investigated from the $PM_{10}$. TSP concentrations and aerosol number concentrations. Concentrations of $PM_{10}$ and TSP measured at KMA increased upto 176 and 230 J.${\mu}g/m^3$ on 22 May 2003, respectively. Aerosol number concentrations of size range from 0.82 to 6.06 ${\mu}m$ increased in Seoul on 17, 19, and 21~24 May 2003, and the concentrations of $NO_2$ and $SO_2$had maximum value of 0.165 ppm at Gwanak Mt. and 0.036 ppm at Guro-dong on 23 May 2003, respectively. Result from analysis on heavy metal elements showed high concentrations of Zn, Pb, Cr, Ni, Cu, and Cd during 20~24 May 2003. This event is examined by comprehensive analyses of synoptic weather conditions, satellite images, concentrations of suspended particles and air pollutants, and heavy metal elements.

An Analysis of Aerosol-Cloud Relationship Using MODIS and NCEP/NCAR Reanalysis Data around Korea (한반도 주변에서 MODIS와 NCEP/NCAR 재분석 자료를 이용한 에어로졸과 구름의 연관성 분석)

  • Kim, Yoo-Jun;Lee, Jin-Hwa;Kim, Byung-Gon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.2
    • /
    • pp.152-167
    • /
    • 2011
  • MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data (역행렬 알고리즘을 이용한 다파장 라만 라이다 데이터의 고도별 에어로졸 Microphysical Parameter 도출)

  • Noh, Young-Min;Kim, Young-Joon;Muller, Detlef
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.97-109
    • /
    • 2007
  • Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.

The variation of aerosol optical depth over the polar stations of Korea (남북극 과학기지에서의 에어로졸 광학 깊이 변동성)

  • Koo, Ja-Ho;Choi, Taejin;Cho, Yeseul;Lee, Hana;Kim, Jaemin;Ahn, Dha Hyun;Kim, Jhoon;Lee, Yun Gon
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.141-150
    • /
    • 2017
  • Using the NASA's Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis for aerosol optical depth (AOD) and satellite-observed carbon monoxide (CO) data, we examined the basic pattern of AOD variations over the three polar stations of Korea: Jangbogo and King Sejong stations in the Antarctica, and Dasan station in the Arctic area. AOD values at King Sejong and Dasan station show the maximum peaks in spring, which looks associated with the high amount of atmospheric CO emitted from the natural burning and the biomass burning. Jangbogo station shows the much less AOD compared to other two stations, and seems not strongly affected by the transport of airborne particles generated from mid-latitude regions. All three polar stations show the AOD increasing trend in general, indicating that the polar background air quality becomes polluted.

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 1: A Preliminary Study of the Effect of Fog Deposition on Behavior of Particles Deposited on the Leaf Surfaces by Microscopic Observation and Leaf-washing Technique

  • Watanabe, Yoko;Yamaguchi, Takashi;Katata, Genki;Noguchi, Izumi
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • To establish the method for investigating the behavior of aerosol particles deposited on the leaf surface against fog water under natural conditions, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analysis and wash water analysis by ion chromatography after the washing treatment were performed using leaves of white birch collected from low part of the tree crown and the top of the tree in Sapporo City, Hokkaido, northern Japan. Each of collected leaves was divided into two parts according to the treatment performed: leaf surface (adaxial side) was 1) untreated, and 2) washed with deionized water with a pipette. In untreated samples, many particles of various shapes, including soil particles and organic debris, were deposited on the surface. Particles containing S were found on the surface of samples collected from only low part of the tree crown. After the washing treatment, SEM-EDX analysis revealed that soil particles and particles containing S had been washed off with water, although some particles such as soil particles and organic debris still remained on the leaf surface. The major anion such as $SO{_4}^{2-}$ was detected in wash water of all samples, although the peak of S in X-ray spectra was not detected from samples collected at top of the tree. The combination of SEM-EDX analysis with wash water analysis indicated that $SO{_4}^{2-}$ was deposited on the leaf surface in dissolved state and/or in state of submicron particles. These results suggested that fog water could remove soil particles and particles containing S and $SO{_4}^{2-}$ from the leaf surfaces, but not all particles. There was no difference in sampling position in the tree crown. Our study suggested that combination with SEM-EDX analysis and wash water analysis would be effective for investigation of the behavior of particles on the leaf surface against fog water.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).