Browse > Article
http://dx.doi.org/10.5572/KOSAE.2007.23.1.097

Retrieval of Aerosol Microphysical Parameter by Inversion Algorithm using Multi-wavelength Raman Lidar Data  

Noh, Young-Min (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology)
Kim, Young-Joon (Advanced Environmental Monitoring Research Center, Department of Environmental Science & Engineering, Gwangju Institute of Science & Technology)
Muller, Detlef (Leibniz-Institute for Tropospheric Research)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.23, no.1, 2007 , pp. 97-109 More about this Journal
Abstract
Vertical distribution and optical properties of atmospheric aerosols above the Korean peninsula are quite important to estimate effects of aerosol on atmospheric environment and regional radiative forcing. For the first time in Korea, vertical microphysical properties of atmospheric aerosol obtained by inversion algorithm were analyzed based on optical data of multi-wavelength Raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST). Data collected on 14 June 2004 at Gwangju ($35.10^{\circ}N,\;126.53^{\circ}E$) and 27 May 2005 at Anmyeon island ($36.32^{\circ}N,\;126.19^{\circ}E$) were used as raw optical data for inversion algorithm. Siberian forest fire smoke and local originated haze were observed above and within the height of PBL, respectively on 14 June 2004 according to NOAA/Hysplit backstrajectory analysis. The inversion of lidar optical data resulted in particle effective radii around $0.31{\sim}0.33{\mu}m$, single scattering albedo between $0.964{\sim}0.977$ at 532 nm in PBL and effective radii of $0.27{\mu}m$ and single scattering albedo between $0.923{\sim}0.924$ above PBL. In the case on 27 May 2005, biomass burning from east China was a main source of aerosol plume. The inversion results of the data on 27 May 2005 were found to be particle effective radii between $0.23{\sim}0.24{\mu}m$, single scattering albedo around $0.924{\sim}0.929$ at 532 nm. Additionally, the inversion values were well matched with those of Sun/sky radiometer in measurement period.
Keywords
Raman lidar; Aerosol; Effective radius; Single scattering albedo;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 노영민, 김영민, 김영준, 최병철(2006) GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구, 한국대기환경학회지, 22(1), 1-14   과학기술학회마을
2 Dubovik, O. and M.D. King (2000) A flexible inversion algorithm for retrieval of aerosol Optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673-20696   DOI
3 Eck, T.F., B.N. Holben, J.S. Reid, N.T. O'Neill, J.S. Schafer, O. Dubovik, A. Smirnov, M.A. Yamasoe, and P. Artaxo (2003) High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions, Geophys. Res. Lett., 30(20), 2035, doi: 10.1029/2003GL017861   DOI
4 Eck, T.F., B.N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H.B. Chen, B. Chatenet, L. Gomes, X.-Y. Zhang, S.-C. Tsay, Q. Ji, D. Giles, and I. Slutsker (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific, J. Geophys. Res, 110, D06202, doi: 10.1029/2004JD005274   DOI
5 Fernald, F.G., B.M. Herman, and J.A. Reagan (1972) Determination of Aerosol Height Distribution by Lidar, J. Appl. Meteorol., 11, 482-489   DOI
6 Kim, J.E., Z. He, and Y.J. Kim (2006) Temporal Variation and Measurement Uncertainty of UV Aerosol Optical Depth Measured from April 2002 to July 2004 at GwangJu, Korea, Atmospheric Research, 81(2), 111-123   DOI   ScienceOn
7 Luo, Y., D. Lu, X. Zhou, and W. Li (2001) Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years, J. Geophys. Res., 106, 14501-14513   DOI
8 Muller, D., U. Wandinger, and A. Ansmann (1999b) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Simulation, Appl. Opt., 38, 2358-2368   DOI
9 Shifin, K.S. and A.Y. Perelman (1964) Calculation of particle distribution by the data on spectral transparency, Pure Appl. Geophys., 58, 208-220   DOI
10 Stull, R.B. (1986) An introduction to Boundary layer meteorology, Kluwer Academic Publishers, Netherlands, 1-25
11 Twomey, S. (1977) Introduction to the mathematics of inversion in remote sensing and indirect measurements, Elsevier, Amsterdam, 243 pp
12 Wandinger, U., D. Muller, C. Bockrnann, D. Althausen, V. Matthias, J. Bosenberg, V. Weiss, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann (2002) Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements, J. Geophys. Res., 107(D21), 8125, doi:10.1029/ 2000JD000202
13 Bockmann, C. (2001) Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions, Appl. Opt., 40, 1329-1342   DOI
14 Draxler, R.R and G.D. Hess (1998) An Overview of the Hysplit_4 Modeling System for Trajectories, Dispersion, and Deposition, Aust. Met. Mag., 47, 295-308
15 Cahoon, D.R. Jr., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson (1994) Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia, J. Geophys. Res., 99, 18627-18638   DOI
16 Fernald, F.G. (1984) Analysis of atmospheric lidar observations: Some comments, Appl. Opt., 23, 652-653   DOI
17 Lee, K., H. Lee, J.E. Kim, Y.J. Kim, J. Kim, and W.v. Hoyningen-Huene (2005) Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003, Atmospheric Environment, 39(1), 85-99   DOI   ScienceOn
18 Muller, D., I. Mattis, U. Wandinger, A. Ansrnann, D. Althausen, and A. Stohl (2005) Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003: Microphysical particle characterization, J. Geophys. Res, D17201
19 Ansmann, A., F. Wagner, D. Muller, D. Althausen, A. Herber, W. von Hoyningen-Huene, and U. Wandinger (2002a) European pollution outbreaks during ACE 2: Optical particle properties inferred from multiwavelength lidar and star-Sun photometry, J. Geophys. Res., 107(D15), 4259, doi:10.1029/ 2001JD001109
20 Hansen, J., M. Sato, and R Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res., 102, 6831-6864   DOI
21 Haywood, J.M. and V. Ramaswamy (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043-6058   DOI
22 Muller, D., U. Wandinger, and A. Ansmann (1999a) Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory, Appl. Opt., 38, 2346-2357   DOI
23 Ansmann, A. and D. Muller (2005) Lidar and atmospheric aerosol particles, in Lidar. Range-resolved Optical Remote Sensing of the Atmosphere, edited by C. Weitkamp, Springer, New York, 105-141
24 Klett, J.D. (1981) Stable analytical inversion solution for processing lidar returns, Appl. Opt., 20(2), 211-220   DOI
25 Veselovskii, I, A. Kolgotin, V. Griaznov, D. Muller, U. Wandinger, and D.N. Whiteman (2002) Inversion with regularization for the retrieval of tropospheric aerosol parameters from multi wavelength lidar sounding, Appl. Opt., 41, 3685-3699   DOI
26 Tikhonov, A.N. and V.Y. Arsenin (1977) Solutions of III-posed Problems, John Wiley, New York, 258 pp
27 Whiteman, D.N., S.H. Melfi, and R.A Ferrare (1992) Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere, Appl. Opt., 31, 3068   DOI
28 Ryu, S.Y., J.E. Kim, H. Zhuanshi, and Y.J. Kim (2004) Chemical Composition of Post-Harvest Biomass Burning Aerosols in Gwangju, Korea, AWMA, 1124-1137
29 Murayama, T., D. Muller, K. Wada, A. Shimizu, M. Sekiguchi, and T. Tsukamoto (2004) Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar over Tokyo. Japan in spring 2003, Geophys. Res. Lett, 31, L23103   DOI   ScienceOn
30 Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113-7131   DOI
31 Muller, D., I. Mattis, A. Ansrnann, B. Wehner, D. Althausen, and U. Wandinger (2004) Closure study on optical and microphysical properties of a mixed urban and Arctic haze air mass observed with Raman lidar and Sun photomter, J. Geophys. Res, 109, D13206   DOI