Browse > Article
http://dx.doi.org/10.5572/KOSAE.2011.27.2.152

An Analysis of Aerosol-Cloud Relationship Using MODIS and NCEP/NCAR Reanalysis Data around Korea  

Kim, Yoo-Jun (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Lee, Jin-Hwa (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.27, no.2, 2011 , pp. 152-167 More about this Journal
Abstract
MODIS/Terra level 3 and NCEP/NCAR Reanalysis data from 2001 to 2008 have been analyzed to understand long-term aerosol and cloud optical properties, and their relationships around Korea. Interestingly, cloud fraction(CF) has the similar annual variation to aerosol optical depth (${\tau}_a$) without any temporal significant trend. Horizontal distributions of ${\tau}_a$ showed the substantial horizontal gradient from China to Korea, especially with the strong difference over the Yellow Sea, which could represent the evidence of the anthropogenic influence from China in the perspective of long-term average. Specifically the negative correlations between ${\tau}_a$ and liquid-phase cloud effective radius ($r_e$) were shown on the monthly-average basis, only in summer with significant associations over the Yellow Sea, but not in the other seasons and/or specific regions. Relationship between ${\tau}_a$ and CF for the low-level liquid-phase clouds exhibited the overall positive correlation, being consistent with cloud lifetime effect. Meanwhile static stability showed no deterministic relationships with ${\tau}_a$ as well as CF. The dependence of aerosol-cloud relationship on the meteorological conditions should be examined more in detail with the satellite remote sensing and reanalysis data.
Keywords
Aerosol; Cloud fraction; Cloud lifetime effect; MODIS;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Suzuki, K., T. Nakajima, A. Numaguti, T. Takemura, K. Kawamoto, and A. Higurashi (2004) A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation, J. Atmos. Sci., 61, 179-194.   DOI   ScienceOn
2 Suzuki, K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T.Y. Nakajima, and G.L. Stephens (2008) Global cloud-system-resolving simulation of aerosol effect on warm clouds, Geophys. Res. Lett., 35, L19817, doi:10.1029/2008GL035449.   DOI   ScienceOn
3 Yoon, S.C., S.W. Kim, S.J. Choi, and I.J. Choi (2010) Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over Northeast Asia, Asia-Pacific J. Atmos. Sci., 46(3), 279-286, doi:10.1007/s13143-010-1002-3.   DOI
4 Matsui, T., H. Masunaga, S.M. Kreidenweis, R.A. Pielke Sr., W.K. Tao, M. Chin, and Y.J. Kaufman (2006) Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle, J. Geophys. Res., 111, D17204, doi:10.1029/2005JD006097.   DOI
5 Min, Q. and L.C. Harrison (1996) Cloud properties derived from surface MFRSR measurements and comparison with GOES results at the ARM SGP site, Geophys. Res. Lett., 23, 1641-1644.   DOI   ScienceOn
6 Platnick, S., M.D. King, S.A. Ackerman, W.P. Menzel, B.A. Baum, J.C. Riedi, and R.A. Frey (2003) The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sen., 41, 459-473.   DOI   ScienceOn
7 Mukai, M., T. Nakajima, and T. Takemura (2008) Anthropogenic impacts on the radiation budget and the cloud field in East Asia based on model simulations with GCM, J. Geophys. Res., 113(D12211), doi:10.1029/2007JD009325.   DOI
8 Nakajima, T., A. Higurashi, K. Kawamoto, and J.E. Penner (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters, Geophys. Res. Lett., 28, 1171-1174.   DOI   ScienceOn
9 Pandithurai, G., T. Takemura, J. Yamaguchi, K. Miyagi, T. Takano, Y. Ishizaka, S. Dipu, and A. Shimizu (2009) Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region, Geophys. Res. Lett., 36, L13805, doi:10.1029/2009GL038451.   DOI   ScienceOn
10 Quaas, J., O. Boucher, and F.-M. Breon (2004) Aerosol indirect effects in POLDER satellite data and the Laboratoire de Meteorologie Dynamique-Zoom (LMDZ) general circulation model, J. Geophys. Res., 109, D08205, doi:10.1029/2003JD004317.   DOI
11 Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters, J. Geophys. Res., 108(D22), 4699, doi:10.1029/2002JD003359.   DOI
12 Jin, M., J.M. Shepherd, and M.D. King (2005) Urban aerosols and their variations with clouds and rainfall: A case study of New York and Houston, J. Geophys. Res., 110(D10S20), doi:10.1029/2004JD005081.   DOI
13 Kawamoto, K., T. Hayasaka, I. Uno, and T. Ohara (2006) A correlative study on the relationship between modeled anthropogenic aerosol concentration and satelliteobserved cloud properties over east Asia, J. Geophys. Res., 111, D19201, doi:10.1029/2005JD006919.   DOI
14 Kim, B.G., Y.J. Kim, and S.H. Eun (2008) An analysis of aerosol optical properties around Korea using AERONET, J. Korean Soc. Atmos. Environ., 24(6), 629-640. (in Korean with English abstract)   과학기술학회마을   DOI   ScienceOn
15 Kim, B.G. and T.Y. Kwon (2006) Aerosol indirect effect studies derived from ground-based remote sensing, J. Korean Soc. Atmos. Environ., 22(2), 235-247. (in Korean with English abstract)
16 Kim, B.G., M.A. Miller, S.E. Schwartz, Y. Liu, and Q. Min (2008) The role of adiabaticity in the aerosol first indirect effect, J. Geophys. Res., 113(D05210), doi:10.1029/2007JD008961.   DOI
17 Kim, B.G., S.E. Schwartz, M.A. Miller, and Q. Min (2003) Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol, J. Geophys. Res., 108, doi:10.1029/2003JD003721.   DOI
18 Kim, S.W., S.C. Yoon, J.Y. Kim, and S.Y. Kim (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements, Atmospheric Environment, doi:10.1016/j.atmosenv.2006.10.044.   DOI   ScienceOn
19 King, M.D., W.P. Menzel, Y.J. Kaufman, D. Tanre, B.C. Gao, S. Platnick, S.A. Ackerman, L.A. Remer, R. Pincus, and P.A. Hubanks (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sensing, 41, 442-458.   DOI   ScienceOn
20 Albrecht, B.A. (1989) Aerosol, cloud microphysics, and fractional cloudiness, Sci., 245, 1227-1230.   DOI   ScienceOn
21 Breon, F.M., D. Tanre, and S. Generoso (2002) Aerosol effect on cloud droplet size monitored from satellite, Sci., 295, 834-838.   DOI   ScienceOn
22 Engstrom, A. and A.M.L. Ekman (2010) Impact of meteorological factors on the correlation between aerosol optical depth and cloud fraction, Geophys. Res. Lett., 37(L18814), doi:10.1029/2010GL044361.   DOI   ScienceOn
23 Feingold, G., W.L. Eberhard, D.E. Veron, and M. Previdi (2003) First measurements of the Twomey indirect effect using ground-based remote sensor, Geophys. Res. Lett., 30(6), 1287, doi:10.1029/2002GL016633.   DOI
24 Hansen, J.E., M. sato, and R. Ruedy (1997) Radiative forcing and climate response, J. Geophys. Res., 102, 6831-6864.   DOI
25 Intergovernment Panel on Climate Change (2007) Climate Change 2007: The Scientific Basis, Cambridge Univ. Press, NY, 1056pp.