DOI QR코드

DOI QR Code

The variation of aerosol optical depth over the polar stations of Korea

남북극 과학기지에서의 에어로졸 광학 깊이 변동성

  • Koo, Ja-Ho (Department of Atmospheric Sciences, Yonsei University) ;
  • Choi, Taejin (Korea Polar Research Institute) ;
  • Cho, Yeseul (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Hana (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jaemin (Department of Atmospheric Sciences, Chungnam National University) ;
  • Ahn, Dha Hyun (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Yun Gon (Department of Atmospheric Sciences, Chungnam National University)
  • Received : 2017.09.24
  • Accepted : 2017.09.29
  • Published : 2017.12.31

Abstract

Using the NASA's Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis for aerosol optical depth (AOD) and satellite-observed carbon monoxide (CO) data, we examined the basic pattern of AOD variations over the three polar stations of Korea: Jangbogo and King Sejong stations in the Antarctica, and Dasan station in the Arctic area. AOD values at King Sejong and Dasan station show the maximum peaks in spring, which looks associated with the high amount of atmospheric CO emitted from the natural burning and the biomass burning. Jangbogo station shows the much less AOD compared to other two stations, and seems not strongly affected by the transport of airborne particles generated from mid-latitude regions. All three polar stations show the AOD increasing trend in general, indicating that the polar background air quality becomes polluted.

Keywords

References

  1. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, S. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunta, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment, Journal of Geophysical Research-Atmospheres, 118, 5380-5552. https://doi.org/10.1002/jgrd.50171
  2. Edwards, D. P., Emmons, L. K., Gille, J. C., Chu, A., Attie, J.-L., Giglio, L., Wood, S. W., Haywood, J., Deeter, M. N., Deeter, M. N., Massie, S. T., Ziskin, D. C., and Drummond, J. R. (2006). Satellite-observed pollution from southern hemisphere biomass burning, Journal of Geophysical Research-Atmospheres, 111, D14312.
  3. Koo, J.-H., Walker, K. A., Jones, A., Sheese, P. E., Boone, C. D., Bernath, P. F., and Manney G. L. (2017). Global climatology based on the ACE-FTS version 3.5 dataset: Addition of mesospheric levels and carbon-containing species in the UTLS, Journal of Quantitative Spectroscopy & Radiative Transfer, 186, 52-62. https://doi.org/10.1016/j.jqsrt.2016.07.003
  4. Law, K. S., and Stohl, A. (2007). Arctic air pollution: origins and impacts, Science, 315, 1537-1540. https://doi.org/10.1126/science.1137695
  5. Li, F., Ginoux, P., and Ramaswamy, V. (2008). Distribution, transport, and deposition of mineral dust in the southern ocean and Antarctica: contribution of major sources, Journal of Geophysical Research-Atmospheres, 113, D10207.
  6. McConnell, J. R., Edwards, R., Kok, G. L., Flanner, M. G., Zender, C. S., Saltzman, E. S., Banta, J. R., Pasteris, D. R., Carter, M. M. and Kahl, J. D. W. (2007). 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing, Science, 317, 1381-1384. https://doi.org/10.1126/science.1144856
  7. Park, S. S., Kim, J., Cho, N., Lee, Y. G., and Cho, H. K. (2011). The variations of stratospheric ozone over the Korean peninsula 1985-2009, Atmosphere, 21, 349-359.
  8. Randles, C. A., Da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka, Y., and Flynn, C. J. (2017). The MERRA-2 aerosol reanalysis, 1980 onward. Part I: system description and data assimilation evaluation, Journal of Climate, 30, 6823-6850. https://doi.org/10.1175/JCLI-D-16-0609.1
  9. Shaw, G. E. (1995). The Arctic haze phenomenon. Bulletin of the American Meteorological Society, 76, 2403-2413. https://doi.org/10.1175/1520-0477(1995)076<2403:TAHP>2.0.CO;2
  10. Stohl, A., and Sodemann, H. (2010), Characteristics of atmospheric transport into the Antarctic troposphere, Journal of Geophysical Research-Atmospheres, 115, D02305.
  11. Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R. Strom, J., Toledano, C., Cachorro, V. E., Ortiz, P., de Frutos, A. M., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T., and Yamanouchi, T. (2007). Aerosols in polar regions: A historical overview based on optical depth and in situ observations, Journal of Geophysical Research-Atmospheres, 112, D16205. https://doi.org/10.1029/2007JD008432
  12. Worden, H. M., Deeter, M. N., Frankenberg, C., George, M., Nichitiu, F., Worden, J., Aben, I., Bowman, K. W., Clerbaux, C., Coheur, P. F., de Laat, A. T. J., Detweiler, R., Drummond, J. R., Edwards, D. P., Gille, J. C., Hurtmans, D., Luo, M., Martinez-Alonso, S., Massie, S., Pfister, G., and Warner, J. X. (2013). Decadal record of satellite carbon monoxide observations, Atmospheric Chemistry and Physics, 13, 837-850. https://doi.org/10.5194/acp-13-837-2013
  13. Yoon, J., Pozzer, A., Chang, D. Y., Lelieveld, J., Kim, J., Kim, M., Lee, Y. G., Koo, J.-H., Lee, J., and Moon, K. J. (2016). Trend estimates of AERONET-observed and model-simulated AOTs between 1993 and 2013, Atmospheric Environment, 125, 33-47. https://doi.org/10.1016/j.atmosenv.2015.10.058