• Title/Summary/Keyword: Aerial vehicle

Search Result 1,155, Processing Time 0.033 seconds

Test development of a UAV equipped with a Fly-By-Wireless flight control system (무선네트워크 비행제어시스템을 탑재한 무인항공기의 시험개발)

  • Oh, Hyung Suk;Kim, Byung Wook;Lee, Si Hun;Nho, Won Ho;Kang, Seung Eun;Ko, Sang Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1039-1047
    • /
    • 2017
  • This paper presents a test development of a Fly-By-Wireless flight control system for a fixed-wing unmanned aerial vehicle (UAV). Fly-By-Wireless system (FBWLS) refers to a system that uses a wireless network instead of a wired network to connect sensors and actuators with a flight control computer (FCC), reducing considerable amount of wires. FBWLS enables to design a much lighter aircraft along with decreased maintenance time and cost. In this research we developed a Zigbee-based FWBLS UAV in which sensors (GPS and AHRS) are wirelessly connected via a FCC to aileron and elevator servo motors. In order to see the effect of time delay due to wireless signal on the flight stability of the UAV, several flight tests were conducted. From the tests, it was confirmed that the effect is minor by comparing the flight response of the FBWLS with the corresponding Fly-By-Wire system.

A Resource Scheduling Based on Iterative Sorting for Long-Distance Airborne Tactical Communication in Hub Network (허브 네트워크에서의 장거리 공중 전술 통신을 위한 반복 정렬 기반의 자원 스케줄링 기법)

  • Lee, Kyunghoon;Lee, Dong Hun;Lee, Dae-Hong;Jung, Sung-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1250-1260
    • /
    • 2014
  • In this paper, a novel resource scheduling, which is used for hub network based long distance airborne tactical communication, is proposed. Recently, some countries of the world has concentrated on developing data rate and networking performance of CDL, striving to keep pace with modern warfare, which is changed into NCW. And our government has also developed the next generation high capacity CDL. In hub network, a typical communication structure of CDL, hybrid FDMA/TDMA can be considered to exchange high rate data among multiple UAVs simultaneously, within limited bandwidth. However, due to different RTT and traffic size of UAV, idle time resource and unnecessary packet transmission delay can occur. And these losses can reduce entire efficiency of hub network in long distance communication. Therefore, in this paper, we propose RTT and data traffic size based UAV scheduling, which selects time/frequency resource of UAVs by using iterative sorting algorithm. The simulation results verified that the proposed scheme improves data rate and packet delay performance in low complexity.

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

The Analysis of Evergreen Tree Area Using UAV-based Vegetation Index (UAV 기반 식생지수를 활용한 상록수 분포면적 분석)

  • Lee, Geun-Sang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • The decrease of green space according to the urbanization has caused many environmental problems as the destruction of habitat, air pollution, heat island effect. With interest growing in natural view recently, proper management of evergreen tree which is lived even the winter season has been on the rise importantly. This study analyzed the distribution area of evergreen tree using vegetation index based on unmanned aerial vehicle (UAV). Firstly, RGB and NIR+RG camera were loaded in fixed-wing UAV and image mosaic was achieved using GCPs based on Pix4d SW. And normalized differences vegetation index (NDVI) and soil adjusted vegetation index (SAVI) was calculated by band math function from acquired ortho mosaic image. validation points were applied to evaluate accuracy of the distribution of evergreen tree for each range value and analysis showed that kappa coefficient marked the highest as 0.822 and 0.816 respectively in "NDVI > 0.5" and "SAVI > 0.7". The area of evergreen tree in "NDVI > 0.5" and "SAVI > 0.7" was $11,824m^2$ and $15,648m^2$ respectively, that was ratio of 4.8% and 6.3% compared to total area. It was judged that UAV could supply the latest and high resolution information to vegetation works as urban environment, air pollution, climate change, and heat island effect.

Susceptibility of Spodoptera exigua to UVA Insecticides Using Agricultural Multi-copter on Cabbage Field (농업용 멀티콥터를 활용한 무인항공기용 작물보호제에 대한 배추 파밤나방의 약제감수성)

  • Park, Bueyong;Lee, Sang-Ku;Jeong, In-Hong;Park, Se-Keun;Lee, Sang-Bum;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.271-280
    • /
    • 2019
  • We investigated the control efficacy and phytotoxicity of unmanned aerial vehicle-applied pesticides against the insect Spodoptera exigua, a major emerging pest in Chinese cabbage. Phytotoxicity was investigated in cabbage and 7 crops cultivated in the perconducted on 8 surrounding crops including Chinese cabbage at 1 to 2 times the recommended pesticide dosage. We treated cabbage fields with spinetoram suspension concentrate (16×), methoxyfenozide, sulfoxaflor suspension concentrate (16×). Then, we used water-sensitive paper to measure the distribution pattern of falling pesticide particles and the degree of coverage. Two of the pesticides showed 97% control efficacy, however, control efficacy might differ in resistant populations. Phytotoxicity was not observed in Chinese cabbage and the 7 surrounding crops treated with 1 to 2 times the recommended pesticide dosage. Analysis of the distribution pattern of falling pesticide particles revealed that breeze caused particle diffusion. Thus, wind is an important factor affecting the uniform treatment and diffusion of multicopter-applied pesticides. It follows that setting optimal conditions is necessary for effective control and treatment.

Land Cover Classification Using UAV Imagery and Object-Based Image Analysis - Focusing on the Maseo-myeon, Seocheon-gun, Chungcheongnam-do - (UAV와 객체기반 영상분석 기법을 활용한 토지피복 분류 - 충청남도 서천군 마서면 일원을 대상으로 -)

  • MOON, Ho-Gyeong;LEE, Seon-Mi;CHA, Jae-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • A land cover map provides basic information to help understand the current state of a region, but its utilization in the ecological research field has deteriorated due to limited temporal and spatial resolutions. The purpose of this study was to investigate the possibility of using a land cover map with data based on high resolution images acquired by UAV. Using the UAV, 10.5 cm orthoimages were obtained from the $2.5km^2$ study area, and land cover maps were obtained from object-based and pixel-based classification for comparison and analysis. From accuracy verification, classification accuracy was shown to be high, with a Kappa of 0.77 for the pixel-based classification and a Kappa of 0.82 for the object-based classification. The overall area ratios were similar, and good classification results were found in grasslands and wetlands. The optimal image segmentation weights for object-based classification were Scale=150, Shape=0.5, Compactness=0.5, and Color=1. Scale was the most influential factor in the weight selection process. Compared with the pixel-based classification, the object-based classification provides results that are easy to read because there is a clear boundary between objects. Compared with the land cover map from the Ministry of Environment (subdivision), it was effective for natural areas (forests, grasslands, wetlands, etc.) but not developed areas (roads, buildings, etc.). The application of an object-based classification method for land cover using UAV images can contribute to the field of ecological research with its advantages of rapidly updated data, good accuracy, and economical efficiency.

A Study on Environmental Assessment of Bikeway based on ANP Model for Sustainable Green Road (지속가능 녹색 도로 조성을 위한 ANP 모델 기반 자전거도로 환경 평가 방안)

  • Lee, Ji Hwan;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2012
  • As part of recent sustainable transport, bike has come into the spotlight as a green transport at close range to link between walking and public transit and also alterative to solve problems of existing vehicle travel. Some arguments on promotion of using bicycles have already been made in Europe, the U.S and other developed countries. To be sure, much has been written extensively in description of utilization of bike oriented by supplier, for examples, Level of Service with bike path, infrastructure such as bicycle racks and lounge etc. Therefore, our study has been differentiated in development of new evaluation model focused on level of bike user's satisfaction, comprehensively considering suitability for bikeway installation, connectivity of the public transportation system and stability in Incheon City. ANP(Analytic Network Process) analysis which is able to allow consideration of the interdependence of criteria has been hired due to multi-collinearity instead of AHP used in multi-criteria decision analysis. Last but not least, we drew bike route on a case-by-case for maintenance and improvement of its facility in Namdong-gu and Bupyeong-gu. To conclude, suggested finding has dem onstrated the validity of evaluation scheme for bikeways which is appropriate for type and purpose and ultimately this can be used to establish policy decision making for improvement of bikeway.

Precise Topographic Change Study Using Multi-Platform Remote Sensing at Gomso Bay Tidal Flat (다중 원격탐사 플랫폼 기반 곰소만 갯벌 정밀 지형변화 연구)

  • Hwang, Deuk Jae;Kim, Bum-Jun;Choi, Jong-Kuk;Ryu, Joo Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.263-275
    • /
    • 2020
  • In this study, DEMs (Digital elevation model) based on LIDAR, TanDEM-X and UAV (Unmanned Aerial Vehicle) are used to analyze topographic change of Gomso tidal flat during a few years. DEM from LIDAR data was observed at 2011 by KHOA (Korean hydrographic and oceanographic agency) and DEM based on TanDEM-X data was generated at Lee and Ryu (2017). UAV data was observed at KM and KH area of Gomso tidal flat. KM area was surveyed at MAY and AUG 2019, and KH area was surveyed at APR 2018 and MAY 2019. During research period, 2011 to AUG 2019, elevation of KM area is decreased 0.24 m in average, and Chenier is retreat to landward about 130 m. In KH area, elevation is increased 0.16 m in average during research period, 2011 to MAY 2019. It is expected that multi-platform remotely sensed data can help to study accurate topographic change of tidal flat.

A Study on the Reestablishment of the Drone's Concept (드론 개념의 재정립에 관한 연구)

  • Lee, Seungyoung;Kang, Wook
    • Korean Security Journal
    • /
    • no.58
    • /
    • pp.35-58
    • /
    • 2019
  • Drone was originally developed for air force aircraft or missile exercise shooting targets, and is being considered as the entire unmanned aircraft to the public. The core concept of a drone can be divided into 'unmanned' and 'aircraft'. However, there are many questions about whether the Fourth Industrial Revolution, expressed as a convergence scientific innovation, is appropriate at a time when smart cities are proposed as a concept of new urban spatial formation, and the role of self-driving vehicles, including drones, is being emphasized within the new urban integrated transport system. In this study, the concept of the existing drones was analyzed for the development process, definitions in each country's laws, and the results of the preceding research to present a concept suitable for future society and a unified term. It is not desirable to define a drone for the purpose of a country, an institution, or an operating entity, depending on the circumstances of the era. It is more reasonable to find the concept of a drone based on human life than in the traditional way, and more reasonable considering the development of the drones in the future. Subsequent studies should be more detailed, more data and research results analyzed, and discussed areas that were not covered in this study. Based on this, research should also be conducted on a variety of topics, including legislation, preparation of operational regulations, and related industrial processes and regulations.

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections (드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석)

  • Lee, Kee-Woong;Kim, Bum-Seung;Moon, Min-Jung;Song, Jung-Hwan;Lee, Woo-Kyung;Song, Yong-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.854-864
    • /
    • 2016
  • The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.