• Title/Summary/Keyword: Adomian decomposition method (ADM)

Search Result 11, Processing Time 0.026 seconds

Adomian Decomposition Method for Point Reactor Kinetics Problems

  • Cho, Young-Chul;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.452-457
    • /
    • 1996
  • A system, such as a reactor point kinetics equation, can be solved with Adomian Decomposition Method (ADM) which uses the notion that all solutions and operators can be expressed as an infinite sum of those basis states, like Adomian polynomials. In this work, ADM is applied to point reactor kinetics equations for step reactivity insertion, ramp input of reactivity, and nonlinear feedback cases without linearization approximation. The results of ADM are more accurate and faster than those of other existing methods, even though we use comparatively large time step sizes.

  • PDF

The Multi-step Adomian Decomposition Method for Approximating a Fractional Smoking Habit Model

  • Zuriqat, Mohammad;Freihat, Asad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.753-765
    • /
    • 2020
  • Smoking is one of the main causes of health problems and continues to be one of the world's most significant health challenges. In this paper, we use the multi-step Adomian decomposition method (MSADM) to obtain approximate analytical solutions for a mathematical fractional model of the evolution of the smoking habit. The proposed MSADM scheme is only a simple modification of the Adomian decomposition method (ADM), in which ADM is treated algorithmically with a sequence of small intervals (i.e. time step) for finding accurate approximate solutions to the corresponding problems. A comparative study between the new algorithm and the classical Runge-Kutta method is presented in the case of integer-order derivatives. The solutions obtained are also presented graphically. The results reveal that the method is effective and convenient for solving linear and nonlinear differential equations of fractional order.

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

THE USE OF ITERATIVE METHODS FOR SOLVING NAVEIR-STOKES EQUATION

  • Behzadi, Shadan Sadigh;Fariborzi Araghi, Mohammad Ali
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.381-394
    • /
    • 2011
  • In this paper, a Naveir-Stokes equation is solved by using the Adomian's decomposition method (ADM), modified Adomian's decomposition method (MADM), variational iteration method (VIM), modified variational iteration method (MVIM), modified homotopy perturbation method (MHPM) and homotopy analysis method (HAM). The approximate solution of this equation is calculated in the form of series which its components are computed by applying a recursive relation. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the presented methods.

A STUDY ON SINGULAR INTEGRO-DIFFERENTIAL EQUATION OF ABEL'S TYPE BY ITERATIVE METHODS

  • Behzadi, Sh.S.;Abbasbandy, S.;Allahviranloo, T.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.499-511
    • /
    • 2013
  • In this article, Adomian decomposition method (ADM), variation iteration method(VIM) and homotopy analysis method (HAM) for solving integro-differential equation with singular kernel have been investigated. Also,we study the existence and uniqueness of solutions and the convergence of present methods. The accuracy of the proposed method are illustrated with solving some numerical examples.

SEMI-ANALYTICAL SOLUTIONS TO HOLLING-TANNER MODEL USING BOTH DIFFERENTIAL TRANSFORM METHOD AND ADOMIAN DECOMPOSITION METHOD

  • A.A. ADENIJI;M.C. KEKANA;M.Y. SHATALOV
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.947-961
    • /
    • 2023
  • This paper summarizes some research findings that show how the differential transform method (DTM) is used to resolve the Holling-Tanner model. To confirm the application, effectiveness, and correctness of the approach, a comparison between the differential transform method (DTM) and the Adomian decomposition method (ADM) is carried out, and an accurate solution representation in truncated series is discovered. The approximate solution obtain using both techniques and comparison demonstrates same outcome which remains a preferred numerical method for resolving a system of nonlinear differential equations.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.4
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

SYSTEMATIC APPROXIMATION OF THREE DIMENSIONAL FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • KHAN, FIRDOUS;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.253-266
    • /
    • 2019
  • In this article, a systematic solution based on the sequence of expansion method is planned to solve the time-fractional diffusion equation, time-fractional telegraphic equation and time-fractional wave equation in three dimensions using a current and valid approximate method, namely the ADM, VIM, and the NIM subject to the estimate initial condition. By using these three methods it is likely to find the exact solutions or a nearby approximate solution of fractional partial differential equations. The exactness, efficiency, and convergence of the method are demonstrated through the three numerical examples.