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SEMI-ANALYTICAL SOLUTIONS TO HOLLING-TANNER

MODEL USING BOTH DIFFERENTIAL TRANSFORM

METHOD AND ADOMIAN DECOMPOSITION METHOD
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Abstract. This paper summarizes some research findings that show how

the differential transform method (DTM) is used to resolve the Holling-

Tanner model. To confirm the application, effectiveness, and correctness
of the approach, a comparison between the differential transform method

(DTM) and the Adomian decomposition method (ADM) is carried out,

and an accurate solution representation in truncated series is discovered.
The approximate solution obtain using both techniques and comparison

demonstrates same outcome which remains a preferred numerical method

for resolving a system of nonlinear differential equations.
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1. Introduction

The prey-predator model is a system of equations that describes an undeter-
mined number of competitive model which is dynamic in nature. The simple
prey-predator model is among the most popular models, being used to demon-
strate linear and non-linear control system such as the relationship between dif-
ferent species in an habitat and love equation [1, 2]. In the concerned field of sci-
ence and technology, numerous significant physical phenomenons are frequently
modeled by the non-linear differential equations. There are several nonlinear
differential equations that can’t be solved analytically and don’t have an ex-
act solution, but they can have their solutions approximated numerically. The
approximate solutions to linear and nonlinear real-world problems have been
determined by researchers using a variety of numerical methods. Examples of
methods used include the differential transform method [3, 4, 5, 6], multi-stage
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differential transform method [6, 9, 10], Adomian decomposition and Laplace
Domitian decomposition method [7, 8], Runge-Kutta methods family [11, 12].
Throughout time, the simple Lotka-Volterra has developed some limitations.
To address this limitation, a logistic growth component was developed to de-
scribe the quadratic models, namely the feeding saturation effect. Yet, contrary
to what may be expected, the quadratic term’s inclusion aids in understand-
ing whether the connection in the model is one of commensalism or parasitism.
Among this models with such ability is the Holling-Tanner model [13, 14], helps
to understand the dynamics and its characteristics. One of the application of
the Holling-Tanner model to epidemiology is the influence of transmissible dis-
ease, under the assumption that it spreads among the prey species only[15]. The
mathematical features and dependability of this model, which describes true eco-
logical models including symbiosis, parasitism, mutualism, and commensalism,
are well recognized. To mention a few, Canadian lynx and snowshoe hare [16],
sparrow and sparrowhawk [17]and mite and spider-mite [18] interactions.
The Holling-Tanner model will be explored in this work utilizing the differential
transform method (DTM) and the Adomian decomposition method (ADM) to
obtain numerical approximations to the nonlinear differential equations. Differ-
ential transform method (DTM) was first introduced [19] to solve problems in
electric circuit. DTM (as known) has applications to investigate ODE and PDE
problems [20], Zika virus vector population [21], predator-prey models [22]. To
find a solution to initial value problems with linear and nonlinear functions, the
differential transform approach has been presented. This approach uses Tay-
lor’s series expansion as a semi-numerical analytic tool; neither linearization nor
intensive computational labor are used in this process.
The differential transform approach differs from the high order Taylor’s series
method in that it provides a polynomial of various degrees as the form of the
solution. The benefit of using the differential transform approach is the ability
to approximatively solve a closed form nonlinear system of ordinary differential
equations that is impossible to solve exactly but can be approximated using a
series solution. To do this, a semi-analytic technique such as DTM and ADM
would be used to investigate the series solution.
This paper is structured as follows: Section 2 details on the formulation of gov-
erning systems of equations, which describes the interaction between the species,
section 4.1 & 4.2 discussed the methodologies. Under section 5, the numerical
simulations governing the system of nonlinear differential equations and numeri-
cal approximation are investigated using Mathematica® and Maple®. In section
6, the discussion of the numerical solutions was done and the conclusions of the
study are stated.
The goal of this study, in connection to the Holling-Tanner model, is to conduct
a systematic investigation of the numerical comparisons of the approximations
solutions between the differential transform method and Adomian decomposition
method.
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2. Governing systems of Equation

Definition 1. A function f : Rn −→ R be defined as nonlinear such that it
does not satisfy superposition principle that is

f(x1 + x2 + . . .) ̸= f(x1) + f(x2) + . . . (1)

The Equation 1, becomes a nonlinear expression by definition. A system of
nonlinear equation contains a set of equations such that

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

f3(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0, (2)

where (x1, x2, . . . , xn) ∈ Rn and each fi is nonlinear real function such that i =
1, 2, 3, . . . , n.. In the problem considered, the nonlinear Holling-Tanner model
is a system of first order differential equations. The model does not have an
exact solution and to obtain an approximate solution, we employed the use of
numerical techniques such as DTM and ADM to compute the systematic analysis
using Mathematica® and Maple®.

3. Holling-Tanner Model

The governing systems of equations is considered with maximum possible num-
ber of parameters. Consider the Holling-Tanner model [14] as a special case of
prey-predator model, described by the following system of equations:

ẋ = b1x− b2x
2 − b3

x · y
b4 + x

, (3)

ẏ = b5y − b6
y2

x
, (4)

t = 0, x(0) = x0, y(0) = y0, (5)

where x = x(t), y = y(t), ẋ = d
dtx(t), ẏ = d

dty(t), t be time and b1, · · · , b6 are
positive parameters, x(t) is used to represent the size of the prey population
at time t, y(t) represent the predator population at time t. Initial conditions
for this system are t = 0, x(t = 0) = x0 > 0 and y(t = 0) = y0 > 0. The
Holling-Tanner model conceptualize the prey equation from the Lotka-Volterra
model, but for the predator it assumes a logistic-like term, in which the predator
carrying capacity is directly proportional to prey density.
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4. Methodology

The numerical methods of solution are described in details in this section:

4.1. Differential Transform Method. Consider the following definitions:

Definition 2. Arbitrary function f(x) is expressed and expanded in Taylor’s
series at point x = 0 in Equation 6

f(x) =

∞∑
n=0

xk

k!

[
dkf

dxk

]
x=0

. (6)

Definition 3. The differential transform of f(x) is defined in Equation 7

F (x) =
1

k!

[
dkf(x)

dxk

]
x=0

(7)

Definition 4. The differential inverse transform of F (x) with respect to Equa-
tion 7 is represented in Equation 8

f(x) =

∞∑
n=0

xkF (k) (8)

It can be denoted that Equation 8, f(x) can be written as a finite series repre-
sentation and represented in Equation 9

f(x) ≈
n∑

n=0

(x− x0)
k
F (k) (9)

where n is convergence of natural values.
If X(k) and Y (k) are the differential transformed functions of x(t) and y(t) with
time t, the following properties shows as follows:

(1) If X(k) = D[x(t)], Y (k) = D[y(t)], with constants r1, r2 are indepen-
dents of time t and k, we obtain D [r1x(t)± r2y(t)] = r1X(k)± r2Y (k).

(2) By convolution, if x(t) = D−1[X(k)] and y(t) = D−1[Y (k)], and we
assume v(t) = x(t)y(t), then D[z(t)] = D[x(t)y(t)] = X(k) ⊛ Y (k) =

r∑
k1=0

X(k)Y (k − r)

The differential transform method has properties that engages with inverse trans-
form to obtain series solution for numerical approximation. This properties are
studied according to [23],[24], the theorems are formulated from Equation 7 and
Equation 9 and represented in the Theorem below:

Theorem 5. If y(t) = u(t)± v(t), then Y (k) = U(k)± V (k).

Theorem 6. If y(t) = du(t)
dt , then Y (k) = (k + 1)U(k + 1).

Theorem 7. If y(t) = d2u(t)
dt2 , then Y (k) = (k + 1)(k + 2)U(k + 2).
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Theorem 8. If y(t) = αu(t), then Y (k) = αU(k).

Theorem 9. If y(t) = dnu(t)
dtn , then Y (k) = (k+n)!

k! · U(k + n) ⇒ (k + 1)(k +
2) . . . (k + n)U(k + n).

Theorem 10. If y(t) = u(t)v(t), then Y (k) =
k∑

n=k1

U(k1)V (k − k1).

Theorem 11. If y(t) = tn, then Y (k) = δ(k−n) when δ(k−n) =

{
1 k = n
0 k ̸= n

.

Theorem 12. If y(t) = eλt, then Y (k) = λk

k!

Theorem 13. If y(t) = (1 + t)k, then Y (k) = m(m−1)...(m−n+1)
k! .

Theorem 14. If y(t) = sin(γt+ α), then Y (k) = ωk

k! sin
(
πn
2 + ω

)
.

Theorem 15. If y(t) = cos(γt+ α), then Y (k) = ωk

k! cos
(
πn
2 + ω

)
.

The proofs are available in [24],[25]. The theorems above is used in transforming
either a linear or nonlinear system ordinary differential equations and to obtain
series solution to system of ODE’s that has no exact solution. In this paper, we
are considering the Holling-Tanner model which comprises of nonlinear terms
and requires huge effort or impossible effort to obtain the closed form solution.
To obtain the closed form of the Holling-Tanner model is unobtainable, hence the
reason we employ the differential transform method to obtain an approximate
solution been expressed into series solution.

4.2. Adomian Decomposition Method (ADM). In mathematical biology
problems are modeled as system of nonlinear differential equation. To obtain
the analytical solution of system on differential equations is not an easy task. In
early 1980, George Adomian introduced a semi-analytical method for approxi-
mating nonlinear differential equation both for partial differential equations and
ordinary differential equations. The method was named Adomian decomposition
method. The solutions to these differential equations are obtained in a form of
series solutions.
Given

Ly +Ny = p (10)

where L = dn

dtn is the order of derivative function which is integrable , N is a
nonlinear operator, y is a dependent variable and p is integrable non homoge-
neous function.

L−1Ly = L−1p− L−1Ny. (11)

L−1 represent integration and with initials conditions, L−1Ly will give an equa-
tion for y including these conditions resulting in

y(t) = g(t)− L−1Ny. (12)
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where g(t) represent the function from the integrating p and using the initial
conditions.
The resulting function is expressed in a series form:

y(t) =

∞∑
i=0

yi. (13)

Assuming y0 = g(t) and the following terms are determined by repetitive for-
mula. Nonlinear terms are expressed as series of polynomials, An. The nonlinear
terms are expressed as

Ny =

∞∑
i=0

Ai. (14)

Finding the Adomian polynomial, a parameter value,γ, is introduced into ex-
pression.

Ai =
1

i!

di

dγi
N

[ ∞∑
i=0

γiyi

]
γ=0

(15)

thus

y(t) = g(t)− L−1
∞∑
0

Ai. (16)

5. Series Approximation

This section gives the results, computational analysis, and implementation of
the algorithm in Mathematica® with its inbuilt functions, the exact solution
can’t be obtained for the model considered which necessitate the reason for the
numerical approximate solution. The series solution is obtained using the differ-
ential transform method and Adomian decomposition method.

5.1. Differential Transform Method (DTM). In section 4.1, we discussed
about the properties and theorems of differential transform method to obtain
numerical approximation to nonlinear systems of ODE whose closed form solu-
tion is unobtainable. An autonomous systems is assumed which is independent
of t
Consider the an autonomous system of ODE in Equation 17

Y ′ =BY,

Y (0) =Y0. (17)

where B is m×m matrix.

Theorem 16. Let Y (k) be the kth differential transform of y(t) and Bk be the
kth of matrix B.
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The solution to the system is obtained from Equation 17 to be represented as
follows:

y(t) =

∞∑
n=0

Y (k)tk =

∞∑
n=0

Y (0)tk (18)

Proof. Engaging Theorem 2, to the Equation 17, the transform procedure is
obtained as follows:

Y ′ =B · Y,

then

(k + 1)Y (k + 1) =B · Y (k); ∀K = 0, 1, 2, . . .

Y (k + 1) =
B · Y (k)

(k + 1)
(19)

Equation 19 is used to obtain the parameters Y (1), Y (2), Y (3), . . .
when k = 0, k = 1, k = 2 in Table 1,

Table 1. Values of Y (k), when k = 0, 1, 2

k=0 k=1 k=2

Y (1) = B·Y (0)
1 Y (2) = B

2 · B·Y (K)
1 Y (3) = B

3 · B
2 · B·Y (K)

1

By assuming the procedure for k = j in Table 1, we obtain Equation 20 as

X(j) =
Bj

j!
X(0), (20)

□

where Bj is the power of matrix and Equation 18 is obtained. We shall present
the numerical analysis of differential transform method to the Holling-Tanner
model. Consider the Equation 3 - Equation 5

ẋ = b1x− b2x
2 − b3

x · y
b4 + x

,

ẏ = b5y − b6
y2

x
,

t = 0, x(0) = 10, y(0) = 5,

with the parameters b1 = 0.2, b2 = 0.01, b3 = 0.05, b4 = 1.0, b5 = 0.0623 and b6 =
0.0223, with respect to Equation 7, we introduce the application of Theorems
and the operations of differential transform to the Holling-Tanner model, we
have the following,



954 A.A. Adeniji, M.C. Kekana, M.Y. Shatalov

X(k + 1) =
1

(k + 1)

[
0.2 ·X(k)− 0.01 ·

k∑
k1=0

X(k1)X(k − k1)

]

−

0.05 ·
k∑

k1=0

X(k1)Y (k − k1)

1.0 +X(k)
,

 (21)

Y (k + 1) =
1

(k + 1)
[0.062 · Y (k)]

−

0.0223 ·
k∑

k1=0

Y (k1)Y (k − k1)

X(k)
,

 (22)

where X(k) and Y (k) are the differential transform of x(t) and y(t) and the
initial conditions are expressed as X(0) = 10 and Y (0) = 5 With respect to
the Equation 8 using the differential inverse transform, the approximate series
solution to Holling-Tanner model is obtained as

x(t) =

k∑
n=0

X(k)tk, (23)

y(t) =

k∑
n=0

Y (k)tk, (24)

For computation, Maple® was used to generate both the series solutions for
the prey x(t) and predator y(t) population. Likewise the values of parameters
X(1), Y (1), X(2), Y (2), X(3), Y (3), X(4), Y (4) are obtained. From Equation 21,
substitute the value(s) of k = 1, 2, 3 to obtain the series solution and expressed
as follows

X(1) = − r1
x0 + 1.0

(25)

Y (1) =
r′1
x0

(26)

X(2) = − r2

(x0 + 1.0)
2 (27)

Y (2) =
r′2
x2
0

(28)

X(3) = − r3 + l3

(x0 + 1.0)
3 (29)
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Y (3) =
r′3
x3
0

(30)

X(4) = − (r4 − l4)

(x0 + 1.0)
4 (31)

Y (4) =
r′4 + l′4
x4
0

(32)

Let the following be represented as

r1 =0.01000000000x0

(
x2
0 − 19.0x0 + 5.0y0 − 20.0

)
r′1 =0.0001000000000y0 (620.0x0 − 223.0y0)

r2 =0.005000000000(2.0x3
0x1 − 16.0x2

0x1

+ 5.0x2
0y1 − 38.0x0x1 + 5.0x0y1 + 5.0x1y0 − 20.0x1)

r′2 =0.00005000000000
(
620.0x2

0y1 − 446.0x0y0y1 + 223.0x1y
2
0

)
r3 =0.003333333333(2.0x4

0x2 + x3
0x

2
1 − 14.0x3

0x2

+ 5.0x3
0y2 + 3.0x2

0x
2
1 − 54.0x2

0x2+

10.0x2
0y2 + 3.0x0x

2
1 + 5.0x1x0y1)

l3 =5.0x0x2y0 − 5.0x2
1y0 − 58.0x2x0 + 5.0x0y2 + x2

1 + 5.0x1y1

+ 5.0x2y0 − 20.0x2

r′3 =0.00003333333333(620.0x3
0y2 − 446.0x2

0y0y2 − 223.0x2
0y

2
1

+ 446.0x0x1y0y1 + 223.0x0x2y
2
0 − 223.0x2

1y
2
0)

r4 =0.002500000000(−112.0x3x
2
0 − 78.0x3x0 + 2.0x1x2

+ 8.0x1x2x0 − 10.0x0x1x2y0 + 2.0x4
0x1x2+

8.0x3
0x1x2 + 12.0x2

0x1x2 − 10.0x1x2y0 + 10.0x1x0y2

− 20.0x3 + 5.0x2
0x1y2 + 5.0x2

0x2y1 + 5.0x2
0x3y0)

l4 =(5.0x0x
2
1y1 + 10.0x0x2y1 + 10.0x0x3y0 + 2.0x5

0x3 − 12.0x4
0x3

+ 5.0x4
0y3 − 68.0x3

0x3 + 15.0x3
0y3 + 5.0x3

1y0 + 15.0x2
0y3

− 5.0x2
1y1 + 5.0x0y3 + 5.0x1y2 + 5.0x2y1 + 5.0x3y0)

r′4 =0.00002500000000(620.0x4
0y3 − 446.0x3

0y0y3 − 446.0x3
0y1y2

+ 446.0x2
0x1y0y2 + 223.0x2

0x1y
2
1)

l′4 =(446.0x2
0x2y0y1 + 223.0x2

0x3y
2
0 − 446.0x0x

2
1y0y1

− 446.0x0x1x2y
2
0 + 223.0x3

1y
2
0)



956 A.A. Adeniji, M.C. Kekana, M.Y. Shatalov

From Equation 25 - Equation 32, the corresponding values obtained are as fol-
lows:

X(1) =0.7727272727, Y (1) = 0.2542500000,

X(2) =− 0.006576681065, Y (2) = 0.007200839775,

X(3) =− 0.002084609146, Y (3) = 0.00007009529776,

X(4) =0.00002426688503, Y (4) = 8.730936000 ∗ 10−8. (33)

Therefore, from Equation 9, the series solution to Equation 3 - Equation 5 using
the differential transform method is obtained as

x(t) =10 + 0.7727272727t− 0.006576681065(t)2

− 0.002084609146(t)3 + 0.00002426688503(t)4 (34)

y(t) =5 + 0.2542500000t+ 0.007200839775(t)2

+ 0.00007009529776(t)3 + 8.730936000× 10−8(t)4 (35)

5.2. Adomian decomposition method (ADM). This section provides the
Adomian decomposition method procedure to the initial value problem by inte-
grating Equation 3 and Equation 4 which yields

x(t) =x0 + b1

∫ t

0

xdt− b2

∫ t

0

x2dt− b3

∫ t

0

(
xy

b4 + x

)
dt (36)

y(t) =y0 + b5

∫ t

0

ydt− b6

∫ t

0

y2

x
dt (37)

Applying the ADM algorithm with the representation in Equation 38

x =

∞∑
n=0

xn, y =

∞∑
n=0

yn (38)

The nonlinear terms are evaluated as

x2 =

∞∑
n=0

Hn (x0, . . . , xn) ,

y2

x
=gn (x0, . . . , xn, y0, . . . , yn)

xy

b4 + x
=Pn (x0, . . . , xn, y0, . . . , yn) (39)

Hn =
1

n!

dn

dλn

[ ∞∑
n=0

(λnxn)
2

]
λ=0

(40)
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Gn =
1

n!

dn

dλn


∞∑

n=0
(λnyn)

2

∞∑
n=0

(λnxn)


λ=0

(41)

Pn =
1

n!

dn

dλn


∞∑

n=0
(xnλ

n)2
∞∑

n=0
(ynλ

n)

∞∑
n=0

(λnxn)


λ=0

(42)

The nonlinear terms Gn, Hn, and Pn are the Adomian polynomials that replaced
Equation 38 to Equation 42 into Equation 36 and Equation 37

∞∑
n=0

x(t) =x0 + b1

∫ t

0

∞∑
n=0

xndt− b2

∫ t

0

∞∑
n=0

Hndt− b3

∫ t

0

∞∑
n=0

Pndt (43)

∞∑
n=0

y(t) =y0 + b5

∫ t

0

∞∑
n=0

yndt− b6

∫ t

0

∞∑
n=0

gndt (44)

The Adomian Polynomials

H0 =x2
0 (45)

(46)

H1 =2x0x1 (47)

H2 =x2
1 + 2x2

0 (48)

H3 =2x1x2 + 2x0x3 (49)

G0 =
y20
x0

(50)

G1 =
2x0y0y1 − y20x1

x2
0

(51)

G2 =
x2
1y

2
0 − 2x0x1y0y1 − x0x2y

2
0 + 2x2

0y0y2
x3
0

(52)

G3 =
r − j

x4
0

(53)

Let

r =− x2
1y

2
0 + 2x0x1x2y

2
0 − x2

0x3y
2
0 + 2x0x

2
1y0x1 − 2x2

0x2y0y1
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j =x2
0x1y

2
1 − 2x2

0x1y0y2 + 2x3
0y1y0 + 2x3

0y0y3

as represented in Equation 53

P0 =
x0y0

b4 + x0
(54)

P1 =
x0y0

b4 + x0
(55)

P2 =
x3
0y2 + b24x2y0 + b24x0y2 − b4x

2
1y0

(b4 + x0)3

+
b4x0x1y1 + b4x0x2y0 + b42x

3
0y2

(b4 + x0)3
(56)

P3 =
d+ v

(b4 + x0)4
(57)

Let

d =b4x
3
1y0 − 2b24x1x2y0 − 2b4x0x1x2y0 + b34x3y0 + 2b24x0x3y0

+ b4x
2
0x3y0 − b24x

2
1y1 − b4x0x

2
1y1 + b34x2y1

v =2b24x0x2y1 + b4x
2
0x2y1 + b34x1y2 + 2b24x0x1y2 + b4x

2
0x1y2

+ b34x0y3 + 3b24x
2
0y3 + 3b4x

3
0y3 + x4

0y3

as represented in Equation 57.
Taking n = 0 and n = 1, we obtain:

x1 =b1

∫ t

0

x0dt− b2

∫ t

0

H0dt− b3

∫ t

0

P0dt (58)

y1 =b5

∫ t

0

y0dt− b6

∫ t

0

g0dt (59)

and

x2 =b1

∫ t

0

x1dt− b2

∫ t

0

H1dt− b3

∫ t

0

P1dt (60)

y2 =b5

∫ t

0

y1dt− b6

∫ t

0

g2dt (61)

By Equation 43 - Equation 44 and Equation 58 - Equation 61, we obtain the
representation of recursive formulas as expressed in Equation 61 - Equation 62
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xn+1 =b1

∫ t

0

xndt− b2

∫ t

0

Hndt− b3

∫ t

0

Pndt (62)

yn+1 =b5

∫ t

0

yndt− b6

∫ t

0

gndt (63)

where the initial value problem in Equation 3 - Equation 5, the values for the
b−parameters are assumed to have the following values b1 = 0.2, b2 = 0.01, b3 =
0.05, b4 = 1.0, b5 = 0.0623 and b6 = 0.0223 with initial condition as x0 = 10, and
y0 = 5 the following series solution is obtained

x(t) =10 + 0.772727t− 0.00657668(t)2 − 0.00208461(t)3

+ 0.0000242669(t)4 (64)

y(t) =5 + 0.25425t+ 0.00720084(t)2 + 0.0000700953(t)3

+ 8.73094× 10−8(t)4 (65)

6. Discussion and Conclusion

The paper highlights the numerical solutions of holling-tanner model where
a well established method i.e differential transform method and Adomian de-
composition method is introduced. We obtain a numerical approximation of
Holling-Tanner model whose closed form is un-obtainable by employing two
semi-analytical methods; differential transform method and Adomian decom-
position method. An approximate solutions was obtained in a series solution,
and it’s concluded that numerical computation and approximations executed
by both methods are accurate and efficient procedure to solve nonlinear sys-
tems of ordinary differential equations with no exact solution. Applying this
semi-analytic methods to the Holing-Tanner model have shown that the meth-
ods considered gives good results, show efficiency in accuracy and convergence.
Conclusively the DTM and ADM investigation shows that the techniques are
reliable, effective for nonlinear problems as the same series representations was
obtained in both cases.
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