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A STUDY ON SINGULAR INTEGRO-DIFFERENTIAL

EQUATION OF ABEL’S TYPE BY ITERATIVE METHODS

SH. S. BEHZADI∗, S. ABBASBANDY AND T. ALLAHVIRANLOO

Abstract. In this article, Adomian decomposition method (ADM) ,vari-
ation iteration method(VIM) and homotopy analysis method (HAM)for
solving integro-differential equation with singular kernel have been inves-

tigated. Also,we study the existence and uniqueness of solutions and the
convergence of present methods. The accuracy of the proposed method are
illustrated with solving some numerical examples.
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1. Introduction

The mathematical formulation of solid state physics,plasma physics, fluid me-
chanics, chemical kinetics and mathematical biology often involve singular inte-
gral and integro-differential equations.
In the three decades , many powerful and simple methods have been proposed
and applied successfully to approximate various type of singular integral and
integro-differential equations with a wide range of applications [1-10].In this
work,we discuss the three different methods such as Adomian decomposition
method (ADM) that introduced in 1986 [11],variation iteration method (VIM)
and homotopy analysis method (HAM) that proposed by Chinese mathemati-
cian Ji-Huan He [12-15] and apply these to solve singular integro-differential
equation whit Abel’s kernel as follows:

k∑
j=0

pj(x)u
(j)(x) = f(x) +

∫ x

a

G(t, u(l)(t))√
g(x− t)

dt, x ∈ J
′
= [a, b]. (1)

Received August 20, 2012. Accepted January 10, 2013. ∗Corresponding author.

c⃝ 2013 Korean SIGCAM and KSCAM.

499



500 Sh. S. Behzadi, S. Abbasbandy and T. Allahviranloo

With initial conditions

u(r)(a) = br, r = 0, 1, ..., k − 1

where a is a real constant and the functions f(x) , G(x, u(l)(x)), l ≥ 0 and
pj(x), j = 0, 1, ..., k that pk(x) ̸= 0 are given ,and u(x) is the solution to be
determined.
To solve Eq.(1),we consider (1) as follows:

u(x) = L−1(
f(x)

pk(x)
) +

k−1∑
r=0

1

(r!)
(x− a)rbr

+ L−1(

∫ x

a

G(t, u(l)(t))

pk(t)
√
g(x− t)

dt)− L−1(
k−1∑
j=0

pj(x)

pk(x)
u(j)(x)).

(2)
Where L−1 is the multiple integration operator as follows:

L−1(.) =

∫ x

a

∫ x

a

...

∫ x

a

∫ x

a

(.) dx dx ... dx dx︸ ︷︷ ︸
k times

.

We can obtain the term
∑k−1

r=0
1

(r!) (x− a)r br from the initial conditions.

From [a10], we have

L−1(

∫ x

a

G(t, u(l)(t))

pk(t)
√
g(x− t)

dt) =

∫ x

a

(x− t)k

(k!)

G(t, u(l)(t))

pk(t)
√
g(x− t)

dt, (3)

k−1∑
j=0

L−1(
pj(x)

pk(x)
) u(j)(x)) =

k−1∑
j=0

∫ x

a

(x− t)k−1

(k − 1)!

pj(x)

pk(x)
u(j)(x) dt, (4)

By substituting (3)and (4) into (2), we obtain

u(x) = L−1( f(x)
pk(x)

) +
∑k−1

r=0
1

(r!) (x− a)rbr +
∫ x

a
(x−t)k

(k!)
G(t,u(l)(t))

pk(t)
√

g(x−t)
dt

−
∑k−1

j=0

∫ x

a
(x−t)k−1

(k−1)!
pj(x
pk(x)

u(j)(x) dt
(5)

For convenient, we set

L−1( f(x)
pk(x)

) +
∑k−1

r=0
1

(r!) (x− a)rbr = F (x)
(x−t)k

(k!) pk(t)
√

g(x−t)
= k1(x, t)

(x−t)k−1

(k−1)!
pj(x
pk(x)

= k2(x, t)

(6)

So,we have

u(x) = F (x) +

∫ x

a

k1(x, t) G(t, u(l)(t)) dt−
k−1∑
j=0

∫ x

a

k2(x, t) u
(j)(t) dt. (7)



A study on singular Integro-Differential equation of Abel’s type by iterative methods 501

The structure of this paper is organized as follows:
In section 2, we apply three iterative method to solving integro-differential equa-
tion with singular kernel. The existance and uniqueness of the solution and con-
vergence of the mentioned proposed methods are brought in section 3.We solve
several examples in section 4,and a brief conclusion is given in section 5.

2. Methodology

Here we represent briefly the main point of each the methods,for more detail
can be refer to[]:

2.1. Adomian decomposition method. consider the functional equation

Au = g(x), (8)

where A represent a general nonlinear differential operator involving both linear
and nonlinear terms,the linear term is decomposed into L + R , where L is
invertible and R is remainder of linear operator and N is nonlinear term. The
operator L can be taken as the highest order derivate .Thus the Eq.(8) can be
written as

Lu+Ru+Nu = g,

because L is invertible , the equivalent expression is

u = f(x)− L−1Ru− L−1Nu, (9)

where the function f(x) represent the term arising from integrate the function
g(x) .
Adomian decomposition method [16,17] defines the unknown function u(x) by
an infinite series

u(x) =
∞∑

n=0

un(x) (10)

where the components un(x) are usually determined recurrently. The nonlinear
term Nu can be decomposed into an infinite series of polynomials given by

Nu =
∞∑

n=0

An, (11)

where An, n ≥ 0 are the Adomian polynomials defined by

An =
1

n!
[
dn

dλn
[N(

∞∑
i=0

λiui)] |λ=0 . (12)

Now, substituting (10) , (11) into (9) ,we have

∞∑
n=0

un(x) = f(x)− L−1R(

∞∑
n=0

un(x))− L−1N(

∞∑
n=0

un(x)), (13)



502 Sh. S. Behzadi, S. Abbasbandy and T. Allahviranloo

Consequently, we can write recursively by

u0 = f(x),
un+1 = −L−1R(un)− L−1(An), n ≥ 0.

(14)

2.1.1. Using ADM. in this part,the Adomian decomposition method is ap-
plied to solve singular integro-differential equation of Abel’s type,according to
the ADM ,we can write the iterative formula (14) as follows:

u0(x) = f(x),

un+1(x) =
∫ x

a
k1(x, t) An dt−

∑k−1
j=0

∫ x

a
k2(x, t) Lnj dt, n ≥ 0.

(15)

the nonlinear terms G(t, ul(t)) andDj(u(x)) (Dj = ∂j

∂xj ), are usually represented
by an infinite series of the so called Adomian polynomials as follows:

G(t, u(l)(t)) =
∞∑
i=0

Ai, Dj(u(x)) =
∞∑
i=0

Lij .

where Ai and Lij (i ≥ 0, j = 0, 1, ..., k − 1) are the Adomian polynomials were
introduced in [22].

2.2. He’s variational iteration method. consider the functional equation

Lu(x) +Nu(x) = g(x),

where L and N are linear and nonlinear operators, respectively and g(x) is a
given continuous function. Ji-Huan He has modified the general Lagrange multi-
plier method [18] into an iteration method, which is called correction functional,
in the following way [19,20,21],

un+1(x) = un(x) +

∫ x

0

λ(τ){Lun(τ) +Nun(τ)− g(τ)}dτ, n ≥ 0, (16)

It is obvious that the successive approximations uj , j ≥ o can be established by
determining λ, a general Lagrange multiplier, which can be identified optimally
via the variational theory. the function ũn is restricted variation where is , and
is considered as a restricted variation i.e.δũn = 0. Therefore, we first determine
the Lagrange multiplier λ that will be identified optimally via integration by
parts. The successive approximations un+1(x), n ≥ 0 of the solution u(x) will
be readily obtained upon using the obtained zeroth approximation u0 may be
selected by any function that justifies at least two of the prescribed boundary
conditions. Whit λ determined , then several approximations uj(x), j ≥ 0 follow
immediately. Consequently, the exact solution may be obtained by using

u(x) = lim
n→∞

un(x). (17)
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2.2.1. Using VIM. In this part,the variation iteration method is applied to
solve singular integro-differential equation of Abel type,according to the VIM,
we can write the iterative formula (16) as follows:

un+1(x) = un(x) +
∫ x

0
λ(τ)[un(τ)− f(τ)−

∫ τ

a
k1(τ, t)G(t, u(l))(t)dt

+
∑k−1

j=0

∫ τ

a
k2(τ, t)u

(j)(t)dt ] dτ.
(18)

To find the optimal λ, we proceed as follows:

δun+1(x) = δun(x) + δ(
∫ x

0
λ(τ)[un(τ)− f(τ)−

∫ τ

a
k1(τ, t)G(t, u(l))(t)dt

+
∑k−1

j=0

∫ τ

a
k2(τ, t)u

(j)(t)dt ] dτ) = δun + λδun |τ=x −
∫ x

0
λ′(τ)δun(τ)dτ = 0

(19)
this yields the stationary conditions
λ′ = 0
1 + λ = 0
this in turn gives λ = 1
Substituting this value of the Lagrange multiplier into the functional (18) gives
the iteration formula

u0 = f(x),
un+1(x) = un(x)−

∫ x

0
[un(τ)− f(τ)−

∫ τ

a
k1(τ, t)G(t, u(l))(t)dt

+
∑k−1

j=0

∫ τ

a
k2(τ, t)u

(j)(t)dt ] dτ.
(20)

2.3. Homotopy analysis method. Consider

N [u] = 0,

where N is a nonlinear operator, u(x) is unknown function. Let u0(x) denote an
initial guess of the exact solution u(x), h ̸= 0 an auxiliary parameter, H(x) ̸= 0
an auxiliary function, and L an auxiliary linear operator with the property
L[r(x)] = 0 when r(x) = 0. Then using q ∈ [0, 1] as an embedding parameter,
we construct a homotopy as follows:

(1−q)L[ϕ(x; q)−u0(x)]−qhH(x)N [ϕ(x; q)] = Ĥ[ϕ(x; q);u0(x), H(x), h, q]. (21)

It should be emphasized that we have great freedom to choose the initial guess
u0(x), the auxiliary nonlinear operator L, the non-zero auxiliary parameter h,
and the auxiliary function H(x). Enforcing the homotopy (21) to be zero, i.e.,

Ĥ[ϕ(x; q);u0(x),H(x), h, q] = 0, (22)

we have the so-called zero-order deformation equation

(1− q)L[ϕ(x; q)− u0(x)] = qhH(x)N [ϕ(x; q)]. (23)

when q = 0, the zero-order deformation Eq.(23) becomes

ϕ(x; 0) = u0(x), (24)

and when q = 1, since h ̸= 0 and H(x) ̸= 0, the zero-order deformation Eq.(23)
is equivalent to

ϕ(x; 1) = u(x). (25)
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Thus, according to (24) and (25), as the embedding parameter q increases
from 0 to 1, ϕ(x; q) varies continuously from the initial approximation u0(x) to
the exact solution u(x). Such a kind of continuous variation is called deformation
in homotopy [24,25].

Due to Taylor’s theorem, ϕ(x; q) can be expanded in a power series of q as
follows

ϕ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (26)

where,

um(x) =
1

m!

∂mϕ(x; q)

∂qm
|q=0 .

Let the initial guess u0(x), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H(x) be properly chosen so that
the power series (26) of ϕ(x; q) converges at q = 1, then, we have under these
assumptions the solution series

u(x) = ϕ(x; 1) = u0(x) +
∞∑

m=1

um(x). (27)

From Eq.(26), we can write Eq.(21) as follows

(1− q)L[ϕ(x, q)− u0(x)] = (1− q)L[
∑∞

m=1 um(x) qm] = q h H(x)N [ϕ(x, q)] ⇒
L[
∑∞

m=1 um(x) qm]− q L[
∑∞

m=1 um(x)qm] = q h H(x)N [ϕ(x, q)]
(28)

By differentiating (26) m times with respect to q, we obtain

{L[
∑∞

m=1 um(x) qm]− q L[
∑∞

m=1 um(x)qm]}(m) = {q h H(x)N [ϕ(x, q)]}(m) =

m! L[um(x)− um−1(x)] = h H(x) m ∂m−1N [ϕ(x;q)]
∂qm−1 |q=0 .

therefore,

L[um(x)− χmum−1(x)] = hH(x)ℜm(ym−1(x)), (29)

where,

ℜm(um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (30)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(29) is governing the linear operator L,
and the term ℜm(ym−1(x)) can be expressed simply by (30) for any nonlinear
operator N .
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2.3.1. Using HAM. in this part,the homotopy analysis method is applied to
solve singular integro-differential equation of Abel’s type,according to the HAM,
we have

N [u(x)] = u(x)−f(x)−
∫ x

a

k1(x, t) G(t, u(l)(t)) dt+

k−1∑
j=0

∫ x

a

k2(x, t) D
j(u(t)) dt,

so,

ℜm(um−1(x)) = um−1(x)−
∫ x

a

k1(x, t) G(t, u
(l)
m−1(t)) dt

+

k−1∑
j=0

∫ n

a

k2(x, t) D
j(um−1(t)) dt.

(31)

Substituting (31) into (29)

L[um(x)− χmum−1(x)] = hH(x)[um−1(x)−
∫ x

a

k1(x, t) G(t, u
(l)
m−1(t)) dt

+

k−1∑
j=0

∫ x

a

k2(x, t) D
j(um−1(t)) dt].

(32)

we take an initial guess u0(x) = f(x), an auxiliary linear operator Lu = u, a
nonzero auxiliary parameter h = −1, and auxiliary function H(x) = 1. This is
substituted into (32) to give the recurrence relation

u0(x) = f(x),

un(x) =

∫ x

a

k1(x, t) G(t, u
(l)
n−1(t)) dt

−
k−1∑
j=0

∫ x

a

k2(x, t) D
j(un−1(t)) dt n ≥ 1.

(33)

3. Existence and convergency of iterative methods

In this section we study the existence and uniquness of the solutions and
convergence of the methods.Consider the Eq.(7), we assume F (x) is bounded

for all x in J
′
and

| k1(x, y) |≤ N1,

| k2(x, y) |≤ N1j , j = 0, 1, ..., k − 1, ∀x ∈ J
′
.

Also, we suppose the nonlinear terms G(x, u(l)(x)) and Dj(u(x)) are Lipschitz
continuous with | G(u(l)(x))−G(u(l)∗(x)) |≤ d | u(x)− u∗(x) |,
| Dj(u(x))−Dj(u∗(x)) |≤ Zj | u(x)− u∗(x) |, j = 0, 1, ..., k − 1. If we set

γ = (b− a) (d N1 + k Z N),
Z = max | Zj |, N = max | N1j |, j = 0, 1, ..., k − 1.

In what follow, we will prove theorems by considering the above assumptions.
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Theorem 3.1. Assuming that 0 < γ < 1,then singular integro-differential equa-
tion of Abel type in Eq.(1), has a unique solution.

Proof. Let u and u∗ be two different solutions of (6) then

| u(x)− u∗(x) |=|
∫ x

a
k1(x, t) [G(t, u(l)(t))−G(t, u∗(l)(t))] dt

−
∑k−1

j=0

∫ x

a
k2(x, t) [D

j(u(t))−Dj(u∗(t))] dt |
≤

∫ x

a
| k1(x, t) | | G(t, u(l)(t))−G(t, u∗(l)(t)) | dt

+
∑k−1

j=0

∫ x

a
| k2(x, t) | | Dj(u(t))−Dj(u∗(t)) | dt

≤ (b− a) (d N1 + k Z N2) | u(x)− u∗(x) |= γ | u(x)− u∗(x) | .

from which we get (1−γ)|u−u∗| ≤ 0. Since 0 < γ < 1, so |u−u∗| = 0. therefore,
u = u∗ and this completes the proof. �

Theorem 3.2. The series solution u(x, y) =
∑∞

i=0 ui(x, y) of problem(1) using
ADM convergence when 0 < γ < 1 and ∥ u1(x, y) ∥< ∞.

Proof. Denote as (C[J
′
], ∥ . ∥) the Banach space of all continuous functions on

J
′
with the norm ∥ f(x) ∥= max | f(x) | for all x in J

′
. Define the sequence of

partial sums sn, let sn and sm be arbitrary partial sums with n ≥ m. We are
going to prove that sn =

∑n
i=0 ui(x) is a Cauchy sequence in this Banach space:

∥ sn − sm ∥= max∀x∈J ′ | sn − sm |= max∀x∈J′ |
∑n

i=m+1 ui(x) |
= max∀x∈J′ |

∑n
i=m+1[

∫ y

a
k1(x, t) Ai dt

−
∑k−1

j=0

∫ x

a
k2(x, t) Lij ] |=

max∀x∈J ′ |
∫ x

a
k1(x, t) (

∑n−1
i=m Ai) dt+

∑k−1
j=0

∫ x

a
k2(x, t) (

∑n−1
i=m Lij ) dt | .

From [22], we have ∑n−1
i=m Ai = G(sn−1)−G(sm−1),∑n−1
i=m Lij = Dj(sn−1)−Dj(sm−1).

So,

∥ sn − sm ∥
= max∀x∈J′ |

∫ x

a
k1(x, t) [G(sn−1)−G(sm−1)] dt−

∑k−1
j=0

∫ x

a
k2(x, t) D

j(sn−1)

−Dj(sm−1) dt) |
≤ max∀x(

∫ x

a
| k1(x, t) || G(sn−1)−G(sm−1) | dt

+
∫ x

a
| k2(x, t) || Dj(sn−1)−Dj(sm−1) | dt)

≤ γ ∥ sn−1 − sm−1 ∥ .

Let n = m+ 1, then

∥ sn − sm ∥≤ γ ∥ sm − sm−1 ∥≤ γ2 ∥ sm−1 − sm−2 ∥≤ ... ≤ γm ∥ s1 − s0 ∥ .

∥ sn − sm ∥≤∥ sm+1 − sm ∥ + ∥ sm+2 − sm+1 ∥ +...+ ∥ sn − sn−1 ∥
≤ [γm + γm1 + ...+ γn−m−1] ∥ s1 − s0 ∥
≤ γm[1 + γ + γ2 + ...+ γn−m−1] ∥ s1 − s0 ∥≤ [ 1−γn−m

1−γ ] ∥ u1(x) ∥ .
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Since 0 < γ < 1, we have (1− γn−m) < 1, then

∥ sn − sm ∥≤ γm

1− γ
∥ u1(x) ∥ .

But | u1(x) |< ∞ ( since f(x) is bounded), so, as m → ∞, then ∥ sn − sm ∥→
0. We conclude that sn is a Cauchy sequence in C[J

′
], therefore the series is

convergence and the proof is complete. �

Theorem 3.3. When solving singular integro-differential equation of Abel’s type
Eq.(1) with VIM, limn→∞ un(x) is convergence to exact solution whenever 0 <
γ < 1 and pk(x, y) = 1

Proof.

un+1(x) = un(x)−
∫ x

0
[un(τ)− f(τ)−

∫ τ

a
(τ−t)k

(k!)
G(t,u(l)

n (t))

pk(t)
√

g(τ−t)
dt

+
∑k−1

j=0

∫ τ

a
(τ−t)k−1

(k−1)!
pj(t)
pk(t)

u
(j)
n (t) dt ] dτ,

(34)

u(x) = u(x)−
∫ x

0
[u(τ)− f(τ)−

∫ τ

a
(τ−t)k

(k!)
G(t,u(l)(t))

pk(t)
√

g(τ−t)
dt

+
∑k−1

j=0

∫ τ

a
(τ−t)k−1

(k−1)!
pj(t)

pk(t)u(j)(t)
dt ]dτ.

(35)

By subtracting relation (34) from (35),

un+1(x)− u(x) =

un(x)− u(x)−
∫ x

0
[un(τ)− u(τ)−

∫ τ

a

(τ−t)k

(k!)pk(t)
√

g(τ−t)
[G(t, u

(l)
n (t))−G(t, u(l)(t))] dt

−
∑k−1

j=0

∫ τ

a

g(τ−t)k−1

(k−1)!

pj(t)

pk(t)
[Dj(un(t))−Dj(u(t))] dt]dτ

(36)

If we set, en+1(x, y) = un+1(x, y)− u(x, y), en(x) = un(x)− u(x) then

en+1(x) = en(x)−
∫ x

0

[un(τ)− u(τ)

−
∫ τ

a

(τ − t)k

(k!)pk(t)
√
g(τ − t)

[G(t, u(l)
n (t))−G(t, u(l)(t))] dt

−
k−1∑
j=0

∫ τ

a

(τ − t)k−1

(k − 1)!

pj(t)

pk(t)
[Dj(un(t))−Dj(u(t))] dt]dτ

− (en(x)− en(x0))

≤ en(x)(1− (b− a) (d N1 + k Z N2)) = (1− γ)en(x).

therefore,

∥ en+1 ∥= max∀xϵJ′ | en+1 |≤ (1− γ)max∀xϵJ′ | en |=∥ en ∥ . (37)

since 0 < γ < 1, then ∥ en ∥→ 0. So, the series converges and the proof is
complete. �
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Theorem 3.4. Singular integro-differential equation of Abel’s type is convergent
to the exact solution when using HAM.

Proof. We assume:

Ĝ(u(x)) =
∑∞

m=0 G(um(x)),

D̂j(u(x)) =
∑∞

m=0 D
j(um(x)),

u(x) =
∑∞

m=0 um(x),

where,

lim
m→∞

um(x) = 0.

We can write,

n∑
m=1

[um(x)− χmum−1(x)] = u1 + (u2 − u1) + ...+ (un − un−1) = un(x). (38)

Hence, from (38)

lim
n→∞

un(x) = 0. (39)

So, using (39) and the definition of the linear operator L, we have

∞∑
m=1

L[um(x)− χmum−1(x)] = L[
∞∑

m=1

[um(x)− χmum−1(x)]] = 0.

Therefore from (29), we can obtain that,

∞∑
m=1

L[um(x)− χmum−1(x)] = hH(x)
∞∑

m=1

ℜm−1(um−1(x, y)) = 0.

Since h ̸= 0 and H(x, y) ̸= 0 , we have

∞∑
m=1

ℜm−1(um−1(x)) = 0. (40)

By substituting ℜm−1(um−1(x)) into the relation (40) and simplifying it , we
have∑∞

m=1 ℜm−1(um−1(x)) =∑∞
m=1[um−1(x)−

∫ x

a
k1(x, t) G(t, u

(l)
m−1(t)) dt−

∑k−1
j=0

∫ x

a
k2(x, t) D

j(um−1(t)) dt

−(1− χm)f(x)] = u(x)− f(x)−
∫ x

a
k1(x, t) [

∑∞
m=1 G(t, u

(l)
m−1(t))] dt

−
∑k−1

j=0

∫ x

a
k2(x, t) [

∑∞
m=1 D

j(um−1(t))] dt.

(41)

From (40) and (41), we have

u(x) = f(x) +
∫ x

a
k1(x, t) Ĝ(t, u(t)) dt−

∑k−1
j=0

∫ x

a
k2(x, t) D̂j(u(t)) dt,

therefore, u(x) must be the exact solution of Eq.(1). �
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Table 1. Numerical results of Example 4.1

x Errors(ADM,n=15) Errors(VIM,n=10) Errors(HAM,n=6)

(0.15) 0.082479 0.062402 0.042336
(0.25) 0.083648 0.063263 0.042564
(0.4) 0.085534 0.064713 0.044859
(0.55) 0.086385 0.066538 0.046126
(0.75) 0.087605 0.067349 0.047089

Table 2. Numerical results of Example 4.2

x Errors (ADM,n=24) Errors (VIM,n=17) Errors (HAM, n=11)

(0.1) 0.0073202 0.0052437 0.0032336
(0.3) 0.0073644 0.0053289 0.0033428
(0.5) 0.0074358 0.0054437 0.0035347
(0.7) 0.0075188 0.0055601 0.0036785
(0.8) 0.0075653 0.0056379 0.0037024

4. Numerical example

In this section, we compute a numerical example which is solved by the ADM,
VIM and HAM. The program has been provided with Mathematica 6.

Example 4.1. Consider the singular integro-differential equation as follow

u′(x) + xu(x) =
1

2
√
x
+ x

√
x− π

2
+

∫ x

0

u(t)√
x− t

dt, (42)

whit initial condition

u(0) = 0.

The exact solution is u(x) =
√
x, ϵ = 10−2.

Example 4.2. Consider the following equation given by

u
′′′
(x) + exu′(x) = ex − 2

√
x+

∫ x

0

u′(t)√
x− t

dt

whit initial condition

u′′(0) = u(0) = 0 and u′(0) = 1.

The exact solution is u(x) = x, ϵ = 10−3.
Tables 1 and 2 show that the error of the HAM is less than the error of the

ADM and VIM.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with the approximations which are convergent are
rapidly to the exact solutions. In this work, the HAM has been successfully
employed to obtain the approximate solution of the singular integro-differential
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equation . For this purpose in examples, we showed that the HAM is more rapid
convergence than the ADM and VIM.
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