• Title/Summary/Keyword: Admixture

Search Result 1,156, Processing Time 0.032 seconds

Estimation and Analysis of Slump Loss in Ready Mixed Concrete (레드믹스트 콘크리트의 슬럼프손실량(損失量)의 추정(推定) 및 슬펌프손실(損失)에 영향을 미치는 요인분석(要因分析))

  • Moon, Han Young;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.23-34
    • /
    • 1986
  • Multiple regression equation was derived for estimation of slump loss in ready mixed concrete and usefulness of the equation was verfied by field test. Factors affecting slump loss were examined and analyzed for transport distance and transport time of ready mixed concrete. The analysis showed that wait and discharge time of ready mixed concrete in job site caused difficulty in the slump control. To determine the influence of the other factors such as mix proportion, temperature of concrete, and dosage of admixture, experimental tests were performed. Generally, there was no significant difference in slump loss according to cement content and initial slump level. For one retarder, more slump loss was found, but difference according to dosage of admixture was not recognized.

  • PDF

Generation of Hydration Heat of the Concrete Combined Coarse Particle Cement and Blast Furnace Slag (조분 시멘트와 고로슬래그를 조합 사용한 콘크리트의 수화발열 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Jang, Duk-Bae;Kim, Young-Pil;Cha, Wan-Ho;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • This study, having combined and displaced blast furnace slag("BS" hereinafter) known as admixture material that delays hydration reaction with coarse particle cement("CC" hereinafter) collected in particle classification method during ordinary portland cement("OPC" hereinafter), reviewed the hydration heat characteristics affecting the concrete. To reduce hydration heat, the study plain-mixed which used 100% OPC for W/B 50% level 1, displaced CC at level 3 of 25%, 50% and 75% for OPC, and by displacing BS with admixture material at level 5 of 0%, 20%, 40%, 60% and 80% for cement(OPC+CC), experimented totally 16 batches. As a result of experiment, in the case of flow, the more CC displacement rate increased, the more it tended to decrease, and the more BS displacement rate increased, the more it decreased. Also, as for simple adiabatic temperature rise by the CC and BS displacement rates, it decreased as displacement rate increased, and particularly in the case of displaced BS of 80%, It showed temperature reduction effect of about 63% companing with plain. Compressive strength decreased in proportion to displacement rate, however strength reduction increment was shown to decrease with age progress.

  • PDF

A Study for Reducing the Slump Loss of Concrete Using High Range Water Reducing Admixture (고성능감수제(高性能減水劑)를 사용한 콘크리트의 유동성(流動性) 손실(損失)을 저감(低減)시키기 위한 연구(硏究))

  • Moon, Han Young;Kim, Ki Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.81-90
    • /
    • 1992
  • This study gives results of 1aboratory investigations to minimize the slump loss of concrete using high range water reducing admixture (HRWR). Various factors influencing on the slump loss such as cement type, HRWR type and dosage time are investigated. The acquired results indicated that 30 minutes delayed dosage of HRWR is very effective on reducing the slump loss though this tendency makes a difference to some extent according to cement and HRWR type. For the most part, the more usage of HRWR increases, the higher the slump loss occurs and concrete using ordinary portland cement has the highest slump loss and concrete using fly ash 20% replacement cement with HRWR of naphthalene type has the good effect on reducing the slump loss.

  • PDF

Estimation of Compressive Strength of Concrete Incorporating Admixture (혼화재 치환 콘크리트의 압축강도 증진해석)

  • Joo Eun-Hee;Pei Chang-Chun;Han Min-Cheol;Sohn Myoung-Soo;Jeon Hyun-Gyu;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • This raper investigates the effect of curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of compressive strength of concrete was conducted using equivalent age equation and rate constant model. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of 35 has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

  • PDF

Fundamental Study on the Characteristics of Antiwashout Underwater Concrete (수중 비분리 콘크리트의 특성에 대한 기초적 연구)

  • 김명식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.74-82
    • /
    • 1996
  • In this study, the characteristics of antiwashout underwater concrete according to the using types of admixture were experimentally investigated. Especially, the comparison on the performance of seven types(CO-A, B, C, D, E, F, G) of the manufactured admixtures was carried out in the same mixing condition and proportions. Based on the results of experiments, the conclusions were summarized as follows : (1) The slump flow on most of specimens except by CO-F type were progressed very well. (2) In most of products, the measured values of suspensions, pH's and air contents were lower than their reference values. However, CO-B, CO-F and CO-G types exceeded the reference ones in suspension and pH. (3) The time lags between initial and final setting were about three hours in most of tests, however, the maximum difference of total setting time was ten hours in comparing with the admixture types. The unit weights were mostly lower than $2300kg/m^3$ and the compressive strengths cured by salt water were about 80% of the ones by fresh water. (4) Finally, in spite of some problems, most of the manufactured admixtures may be performed well their functions in antiwashout under-water concrete if the using quantities are properly controlled by the site experiments.

  • PDF

A Study on the Guide Line of Quality of Waterproofing Admixture of Powder Type for Concrete (콘크리트 혼입용 분말형 구체방수재의 품질기준에 관한 연구)

  • 우영제;배기선;오상근;김형무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.967-974
    • /
    • 2000
  • By testing compressive strength, water absorption and water premeablity, to establish the standard of quality of waterproofing admixture of power type for concrete, we propose guide line as following ; $.$Setting time: more than 1 hour, within 10 hours $.$Slump: To be satisfied with request of user $.$Air content: To be satisfied with request of user $.$Safety: Without crack or deformation $.$Ratio of compressive strength: $\circled1$ At 3 days : more than plain specimen by 0.9 (An inorganic material) more than plain specimen by 0.4 (An inorganic material mixed organic) $\circled2$ At 7, 28 days : more than plain specimen by 1.0 $.$Ratio of water absorption Coefficient: $\circled1$An inorganic material: less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8 $.$Ratio of water premeablity : $\circled1$ An inorganic material : less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8

An experimental study on shrinkage and crack resistance of Hwang Toh concrete mixed with PET fiber (PET보강섬유를 혼입한 황토콘크리트의 건조수축 및 균열저항성에 관한 실험적 연구)

  • Kim, Hyun-Young;Kim, Sung-Bae;Yi, Na-Hyun;Han, Byung-Goo;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.797-800
    • /
    • 2008
  • To decrease the usage of cement, the pozzolan reaction materials are used as a mineral admixture. Hwang Toh which is broadly deposited in Korea is well known as a environment friendly material and the activated Hwang Toh which has the property of pozzolan reaction is practically used as a mineral admixture of concrete. PET fiber which is made by recycled PET bottle controls micro crack in concrete. But the study about concrete mixed with reinforcing fiber is not enough and the property of Hwang Toh concrete mixed with PET fiber is more complicated case. So this study performed drying shrinkage experiment to analyse mechanical property of Hwang Toh concrete mixed with PET fiber.

  • PDF

The properties of cement mortar using waste pottery powder (폐도자기분말의 혼입에 따른 시멘트 모르타르의 특성)

  • Lee, Hwa-Young;Kim, Deuck-Mo;Mun, Kyoung-Ju;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.785-788
    • /
    • 2008
  • Ceramics manufactures in the nation produced more than 5,000 tons of waste pottery a year increasing industrial waste quantity. However, Almost researches were made to reduce environmental pollution and recycle waste ware. It is needed that they are used as recycled materials in order to prevent environmental pollution and gain economic profits. Therefore, the purpose of this study is to present the method of utilizing the recycled cements that are obtained from waste pottery. The test results that replacement of waste pottery powder by cement admixture at the level 10% had effect on the stripping strength(compressive strength). Also, When GBFS and WP used by cement admixture, WP is better than GBFS.

  • PDF

The Analysis of Fundamental Property for Developing High Performance Concrete of Ternary System (3성분계 고성능 콘크리트 개발을 위한 기초 특성 분석)

  • Park, Byung-Kwan;Choi, Sung-Yong;Kim, Soo-Yung;Kim, Bok-Kyu;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.805-808
    • /
    • 2008
  • This study analyzed the basic characteristics of concretes to develop 3 ingredients high performance concrete that displaced BS and FA, and the results are as follows. As part of fresh concrete characteristics, the flow was shown more increase than OPC with increase in admixture material displacement rate, and air amount tended to decrease with increase in admixture displacement rate. As hardened concrete characteristics, compressive strength decreased below OPC at early age with increase in BS and FA displacement rate, however at age 28 days, it was similar to OPC or increased above that. Particularly, at B30F15 with age 28 days, its compressive strength was about 15% higher than OPC

  • PDF

A Study on Early-strength Development of Concrete Using Accelerating AE Water Reducing Agents for the Estimation of Optimum Duration (촉진형 AE감수제를 사용한 콘크리트의 최적공기산정을 위한 조기강도 발현 특성 연구)

  • Lee, Joo-Hun;Sa, Soon-Heon;Ji, Suk-Won;Jeon, Hyun-Gyu;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.91-94
    • /
    • 2006
  • The way to shorten a construction period is considered to an very important technology development element as reducing the formwork removal periods with promoting strength revelation own concrete. This study executed experiment to review usability of early strength revelation chemical admixture which is judged in ways effective with premature removal of form about concrete. Use of early strength revelation AE water reducin admixture is apperaing so that strength revelation by early hydration promotions is excellent. The results of being applied proposed work process are that compressive strength are appeared more than 5MPa within 16 hours so that removal of vertical form was possible. the concrete compressive strength satisfied with a more than 2/3 of specified concrete strength for removal of horizontal form are appeared in 42 hours of 27 MPa proportioning strength, in 36 hours of 30, 35 MPa proportioning strength so that the 6 days cycle time of concrete structural frame work is cut by 2 days as shortening delayed period in works of removing slab forms. So construction cost reductions and a construction period shortening are judged so that it is possible.

  • PDF