• 제목/요약/키워드: Adjoint Variable Method

검색결과 95건 처리시간 0.028초

보조변수법과 복소변수를 연동한 설계 민감도 해석 연구 (Adjoint Variable Method combined with Complex Variable for Structural Design Sensitivity)

  • 김현기;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.418-423
    • /
    • 2008
  • Among various sensitivity evaluation techniques, semi-analytical method is quite popular since this method is more advantageous than analytical method and global finite difference method. However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified for individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, the adjoint variable method combined with complex variable is proposed to obtain the shape and size sensitivity for structural optimization. The complex variable can present accurate results regardless of the perturbation size as well as easy to be implemented. Through a few numerical examples of the static problem for the structural sensitivity, the efficiency and reliability of the adjoint variable method combined with complex variable is demonstrated.

  • PDF

보조변수법과 복소변수를 연동한 설계 민감도 해석 연구 (Adjoint Variable Method Combined with Complex Variable for Structural Design Sensitivity)

  • 김현기;조맹효
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.243-250
    • /
    • 2009
  • The adjoint variable method can reduce computation time and save computer resources because it can selectively provide the sensitivity information for the positions that designers wish to measure. However, the adjoint variable method commonly employs exact analytical differentiation with respect to the design variables. It can be cumbersome to precisely differentiate every given type of finite element. This trouble can be overcome only if the numerical differentiation scheme can replace this exact manner of differentiation. But, the numerical differentiation scheme causes of severe inaccuracy due to the perturbation size dilemma. For assuring the accurate sensitivity without any dependency of perturbation size, this paper employs a complex variable that has been mainly used for computational fluid dynamics problems. The adjoint variable method combined with complex variables is applied to obtain the shape and size sensitivity for structural optimization. Numerical examples demonstrate that the proposed method can predict stable sensitivity results and that its accuracy is remarkably superior to traditional sensitivity evaluation methods.

보조변수법을 이용한 Zwicker 라우드니스의 설계민감도 (Design Sensitivity Analysis of Zwicker's Loudness Using Adjoint Variable Method)

  • 왕세명;권대일;김좌일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1432-1436
    • /
    • 2006
  • Feasibility of optimizing Zwicker's loudness has been shown by using MSC/NASTRAN, SYSNOISE, and a semi-analytical design sensitivity by Wang and Kang. Design sensitivity analysis of Zwicker's loudness is developed by using ANSYS, COMET, and an adjoint variable method in order to reduce computation. A numerical example shows significant reduction of computation time for design sensitivity analysis.

  • PDF

감쇠계 고유치문제의 설계민감도해석을 위한 보조변수법 (An Adjoint Variable Method for Eigenproblem Design Sensitivity Analysis of Damped Systems)

  • 이태희;이진민;유정훈;이민욱
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1527-1533
    • /
    • 2005
  • Three methods for design sensitivity analysis such as finite difference method(FDM), direct differentiation method(DDM) and adjoint variable method(AVM) are well known. FDM and DDM for design sensitivity analysis cost too much when the number of design variables is too large. An AVM is required to compute adjoint variables from the simultaneous linear system equation, the so-called adjoint equation. Because the adjoint equation is independent of the number of design variables, an AVM is efficient for when number of design variables is too large. In this study, AVM has been extended to the eigenproblem of damped systems whose eigenvlaues and eigenvectors are complex numbers. Moreover, this method is implemented into a commercial finite element analysis program by means of the semi-analytical method to show applicability of the developed method into practical structural problems. The proposed_method is compared with FDM and verified its accuracy for analytical and practical cases.

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

비선형 열탄성 연성 구조물에 대한 위상 최적설계 (Topology Design Optimization of Nonlinear Thermoelasticity Problems)

  • 문세준;하윤도;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.347-354
    • /
    • 2004
  • Using an efficient adjoint variable method, we develop a unified design sensitivity analysis (DSA) method considering both steady state nonlinear heat conduction and geometrical nonlinear elasticity problems. Design sensitivity expressions with respect to thermal conductivity and Young's modulus are derived. Beside the temperature and displacement adjoint equations, another coupled one is defined regarding the obtained adjoint displacement field as the adjoint load in temperature field. The developed DSA method is shown to be very efficient and further extended to a topology design optimization method for the nonlinear weakly coupled thermo-elasticity problems using a density approach.

  • PDF

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

AERODYNAMIC SENSITIVITY ANALYSIS FOR NAVIER-STOKES EQUATIONS

  • Kim, Hyoung-Jin;Kim, Chongam;Rho, Oh-Hyun;Lee, Ki Dong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권2호
    • /
    • pp.161-171
    • /
    • 1999
  • Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct differentiation method and an adjoint method respectively from discrete two-dimensional compressible Navier-Stokes equations. Unlike previous other researches, Baldwin-Lomax algebraic turbulence model is also differentiated by hand to obtain design sensitivities with respect to design variables of interest in turbulent flows. Discrete direct sensitivity equations and adjoint equations are efficiently solved by the same time integration scheme adopted in the flow solver routine. The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time by allowing the large banded flux jacobian matrix unassembled. Direct sensitivity code results are found to be exactly coincident with sensitivity derivatives obtained by the finite difference. Adjoint code results of a turbulent flow case show slight deviations from the exact results due to the limitation of the algebraic turbulence model in implementing the adjoint formulation. However, current adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior researches.

  • PDF

불구속연쇄 동적시스템을 위한 최적설계 프로그램 개발 (Development of An Optimal Design Program for Open-Chain Dynamic Systems)

  • 최동훈;한창수;이동수;서문석
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.12-23
    • /
    • 1994
  • This paper proposes an optimal design software for the open-chain dynamic systems whose governing equations are expressed as differential equation. In this software, an input module and an automatic creation module of the equation of motion are developed to contrive the user's convenience. To analyze the equation of motion of the dynamic systems, variable-order and variable-stepsize Adams-Bashforth-Moulton predictor-corrector method is used to improve the efficiency. For the optimization and the design sensitivity analysis, ALM(augmented lagrange multiplier)method and adjoint variable method are adopted respectively. An output module with which the user can compare and investigate the analysis and the optimization results through tables and graphs is also provided. The developed software is applied to three typical dynamic response optimization problems, and the results compare very well with those available in the literature, demonstrating its effectiveness.

광대역 전자파를 이용한 역산란 해석 연구 (Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic waves)

  • 이정훈;정용식
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.169-174
    • /
    • 2005
  • 본 논문에서는 시간영역 유한차분법(FDTD: Finite-Difference Time-Domain Method)과 설계민감도법(Design Sensitivity Analysis)을 이용하여 유전체 산란체(Dielectric Scatterer)를 복원하기 위한 역산란문제(Inverse Scattering의 새로운 해석기법을 제안하였다. 이때 복원의 빠른 수렴을 위하여 도함수를 이용한 설계민감도법을 도입하였고 본 연구에서는 시간영역 유한차분법으로부터 직접 설계민감도 수식을 도출하였다. 계산의 효율성을 위하여 보조변수법(Adjoint Variable Method)을 도입하여 보조변수 방정식을 도출하고 최적화 알고리듬으로 최대경사도법을 이용하여 반복적인 추정을 통하여 유전체를 복원하였다. 본 연구의 타당성의 보이기 위하여 2차원 $TM^2$에서의 유전체 복원 사례를 제시한다.

  • PDF