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AERODYNAMIC SENSITIVITY ANALYSIS
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Abstract

Aerodynamic sensitivity analysis codes are developed via the hand-differentiation using a direct
differentiation method and an adjoint method respectively from discrete two-dimensional compressi-
ble Navier-Stokes equations.  Unlike previous other researches, Baldwin-Lomax algebraic turbu-
lence model is also differentiated by hand to obtain design sensitivities with respect to design vari-
ables of interest in turbulent flows.  Discrete direct sensitivity equations and adjoint equations are
efficiently solved by the same time integration scheme adopted in the flow solver routine.  The re-
quired memory for the adjoint sensitivity code is greatly reduced at the cost of the computational time
by allowing the large banded flux jacobian matrix unassembled.  Direct sensitivity code results are
found to be exactly coincident with sensitivity derivatives obtained by the finite difference.  Adjoint
code results of a turbulent flow case show slight deviations from the exact results due to the limita-
tion of the algebraic turbulence model in implementing the adjoint formulation.  However, current
adjoint sensitivity code yields much more accurate sensitivity derivatives than the adjoint code with
the turbulence eddy viscosity being kept constant, which is a usual assumption for the prior re-
searches.

1. Introduction

With the advances in computational fluid dynamics, design optimization methods in the aerody-
namic design are more important than ever.  In the application of gradient-based optimization
methods to aerodynamic design problems, one of the major concerns is an accurate and efficient cal-
culation of sensitivity derivatives of system responses of interest, which are usually aerodynamic
coefficients or surface pressure distributions with respect to design variables.

The finite difference approximation approach is the easiest way to use since it does not require
any development of a sensitivity code.  However, the accuracy of finite difference approach depends
critically on the perturbation size of design variables and the flow initialization.[1]

A robust way of computing sensitivity derivatives is to build a sensitivity analysis code.  A sen-
sitivity analysis code can be developed by direct differentiation methods[2-5] or adjoint variable
methods[6-8].  Direct differentiation methods are more economical than adjoint variable methods
when the numbers of objectives and constraints are larger than the number of design variables.
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Adjoint variable methods are preferable in the opposite case.
Both methods can be dealt with either discreteor continuous approach.  In the discrete approach,
discretized flow equations are differentiated, while  the flow equations are differentiated before they
are discretized in the continuous approach.  The discrete approach can be advantageous in the sense
that the derivatives obtained are consistent with finite-difference derivatives regardless of a computa-
tional grid size .  On the other hand, the continuous approach provides a clear insight into the nature
of the sensitivity solution.

Previous works on the sensitivity analysis by human hand in both direct differentiation and ad-
joint variable methods have shown troubles in differentiating viscosity terms , which reflects the
variation of laminar and/or turbulent viscosit ies with respect to the variation of design variables.[5,6]
Automatic differentiation tools such as ADIFOR[3,4] and Odyssée[7,8] have been successfully used
for a sensitivity code generation from Navier-Stokes codes including turbulence models.  However,
the sensitivity code generated by the automatic differentiation is much less efficient than a hand-
differentiated one.[3,8]

Another problem with adjoint codes generated by automatic differentiation in reverse mode[7,8]
or by human hand2 is a memory problem.  Actually, they require much more memory than the origi-
nal flow solver and are prohibitive for large two-dimensional problems and all three-dimensional
problems.

In this study, a Navier-Stokes solver with the Baldwin–Lomax algebraic turbulence model is di-
rectly differentiated by hand, and a corresponding adjoint code is developed from the direct-
differentiated sensitivity code.  The required memory for the adjoint sensitivity code is greatly re-
duced at the cost of the computational time by allowing the large banded flux jacobian matrix unas-
sembled.  Sensitivity derivatives obtained by the sensitivity codes developed herein are compared
with those calculated using the finite difference approximation.

The rest of this paper presents a brief review on the flow solver used in this study, and a basic
theory of the direct differentiation method and the adjoint variable method in the discrete approach.
Computational results are then given for example problems , including subsonic and transonic laminar
and turbulent flows around NACA0012 airfoil.

2. Flow Analysis

A two-dimensional Navier-Stokes solver developed and validated in Ref.[9,10] was used for the
flow analysis. Reynolds averaged two-dimensional compressible Navier-Stokes equations in gener-
alized coordinates are used in the conservation form based on a cell-centered finite volume approach,
given as
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where R is the residual vector, Q is a four-element vector of conserved flow variables.  Navier-
Stokes equations are discretized in time using the Euler implicit method and linearized by employing
the flux jacobian.  This results in a large system of linear equations in delta form at each time step as
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Roe's Flux Difference Splitting (FDS) scheme was adopted for the space discretization in the in-
viscid flux terms  of the residual vector on the right-hand side; MUSCL approach with Koren limiter
is employed to obtain a third order accuracy.  The central difference method is used for viscous flux
terms of the residual vector. In the implicit part , Beam & Warming's Alternating Direction Implicit
(ADI) method is used, and van Leer’s Flux Vector Splitting (FVS) is employed with a first order
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accuracy for the flux jacobian.  The flux jacobian for the viscous part is neglected in the implicit
part since it does not influence the solution accuracy.  Turbulence effects were considered using the
Baldwin-Lomax algebraic model with a relaxation technique.  All boundary conditions were speci-
fied explicitly.  One-dimensional characteristic conditions were used for the inflow and outflow
boundaries.  The no-slip condition and adiabatic wall condition were specified on the solid wall, and
local time stepping was used.

 A C-type grid system around the airfoil was generated by a conformal mapping technique, giv-
ing 135 points in the chordwise direction, 41 points in the normal direction and 95 points on the air-
foil surface.

 

3. Sensitivity Analysis

Direct Differentiation Method

The discrete residual vector of nonlinear aerodynamic analysis for steady problems can be written
symbolically as

[ ] 0),(X),(QR =βββ ,                         (3)

where X is the grid position vector, and β is the vector of design variables.  Boundary conditions are
also included in the residual vector R.

Eq. (3) is directly differentiated with respect to βk to yield the fo llowing equation.
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The grid sensitivity vector { }kd/dX β can be calculated by differentiating the grid generation code or

simply by applying the finite difference approxiation.  However, it can be obtained analytically, if
the grid points are analytically modified during the design process.

In order to find the solution { }kd/dQ β  of Eq. (4), a pseudo time term is added and the same time

integration scheme with the flow solver is adopted.  Applying Euler implicit method followed by the
linearization with van Leer flux jacobian of a first-order accuracy gives the following system of linear
algebraic equations.
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The above system of equations is solved with ADI scheme which is used for the flow solver.
By comparing Eq. (2) and (5), it can be noted that one can obtain a direct sensitivity code by di-

rectly differentiating the right-hand side of the discretized flow equations.  All of the derivative
terms in Eq. (4) are differentiated by hand except grid sensitivity vector { }kd/dX β , which are cal-

culated from a grid generation code.
The jacobian matrices [ ]Q/R ∂∂ and [ ]X/R ∂∂ in Eq. (4) include Roe’s FDS flux jacobian and vis-

cous flux jacobian and are very large banded matrices as the inviscid and viscous fluxes are third- and
second- order accurate, respectively.  In order to avoid this problem, the terms [ ]{ }kd/dQQ/R β∂∂

and [ ]{ }kd/dXX/R β∂∂  of Eq. (4) are calculated without the explicit formulation of the very large

Jacobian matrices [ ]Q/R ∂∂  and [ ]X/R ∂∂ .  Van Leer’s flux Jacobian in the LHS is frozen at the

steady-state value.  This leads to the required memory increase and computational time reduction.
When the flow variable sensitivity vector { }kd/dQ β  is obtained, The total derivative of the system

response of interest, Cj can be calculated.  Cj is a function of flow variables Q, grid position X, and
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design variables β; i.e.,
( )βββ= ),(X),(QCC jj .                           (6)

The sensitivity derivative of the aerodynamic coefficient Cj with respect to the kth design vari-
able βk is given by
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Adjoint Variable Method

As the total derivative of the residual vector { }kd/dR β  is null in the steady state, we can introduce

adjoint variables and combine Eq. (4) and (7) to obtain
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If we find { }T
jλ  that satisfies the following adjoint equation
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we can obtain the sensitivity derivative of Cj with respect to βk  by the following equation.
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The adjoint equation (9) is also converted to the following system of linear algebraic equations
and is solved by the ADI scheme.
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The transposed flux Jacobian [ ]TQ/R ∂∂ in the LHS of Eq. (11) is van Leer’s FVS flux jacobian that is

frozen at the steady-state value.  The transposed flux Jacobian [ ]TQ/R ∂∂ in the RHS includes Roe’s

FDS flux Jacobian and viscous flux Jacobian and is a very large banded matrix.  Unlike the flux
Jacobian [ ]Q/R ∂∂ of the direct differentiation method, all the element of [ ]TQ/R ∂∂ should be

explicitly calculated.   In the prior researches on the discrete adjoint variable methods[2,7], all the
elements of the jacobian matrix [ ]TQ/R ∂∂  were calculated and assembled at the cost of very large

memory requirement.  Although the computational time can be decreased as the elements of the
jacobian matrix are calculated only once, the memory requirement is prohibitive for large two-
dimensional problems and all three-dimensional problems.

In the present study, elements of [ ]TQ/R ∂∂  are calculated and multiplied by the corresponding

element of the adjoint vector { }jλ , and thus the large matrix [ ]TQ/R ∂∂ need not to be assembled.

This increases the computational time as the elements of the flux jacobian matrix [ ]TQ/R ∂∂  have to

be calculated every iteration.  However, the required memory can be remarkably reduced to the
order of the required memory of the flow solver.

In Ref.[3] it was reported that a hand-differentiated sensitivity code may take six man-months to
two man-years, or even longer to be generated, whereas it takes about one man-week to generate a
direct-differentiation sensitivity code by the automatic differentiation.  According to authors’ expe-
rience, however, less than two man-weeks were required to build a hand-differentiated direct diffe r-
entiation sensitivity code, and one man-month to build an adjoint sensitivity code for two-
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dimensional Navier-Stokes equations.  This indicates that the hand-differentiation is a viable ap-
proach compared to the automatic differentiation in the required time for the sensitivity code genera-
tion.

4. Results & Discussion

In order to evaluate the performance of the direct and adjoint sensitivity codes to accurately cal-
culate sensitivity derivatives, sensitivity analyses  are conducted for NACA0012 airfoil in the lami-
nar/turbulent flow field of subsonic and transonic regime.

The results are compared with the derivatives computed by the following finite difference ap-
proximation.
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The residual of the flow solver is reduced to 10-11 from the freestream value for the finite diffe r-
ence calculation.  The step size 

kβ∆  is 10-6 or 10-7 depending on the design variable and the flow

condition.
The residuals of the sensitivity codes are reduced to 10-7 from the initial value of the residual.

The initial value of the sensitivity derivatives { }kd/dQ β  and adjoint variables { }jλ  is set to zero.

In order to consider the sensitivity derivative with respect to the geometry change, one of the
Hicks-Henne functions is adopted as a shape function as follows.
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The upper surface of NACA0012 airfoil is modified as follows.

)x(FYY oldnew β+=  .                              (14)

Where β is a design variable.  The incidence angle α is the other design variable in this study.

Direct Differentiation Approach

In order to validate the sensitivity code by the direct differentiation method, sensitivity derivatives
obtained by the direct sensitivity code is compared to those by the finite difference method.  Co m-
putations are conducted for both subsonic and transonic turbulent flows.

The first example is a subsonic turbulent flow case. The flow condition is M∞ = 0.6, α = 2°  and
Reynolds number = 6,500,000.  Fig.1 shows pressure derivative (p ′= dp/dα) contours.  Streamlines
of velocity sensitivity derivatives (u ′, v′) in Fig. 2 show the effect of the incidence angle increment.
Table 1 shows the computed sensitivity derivatives of aerodynamic coefficients with respect to inci-
dence angle α and the coefficient β of the shape function.  The sensitivity derivatives of aerody-
namic coefficients by the direct differentiation and the finite difference method compare very well
with each other up to four or five significant digits.
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Table 1 Validation of direct sensitivity code:
subsonic turbulence case (M∞ = 0.60, α = 2°  and Re = 6,500,000)

dCl/dα dCd/dα DCm/dα
FD (Δα=10-6) 7.379933 0.05013069 0.1343019

DD 7.379935 0.05013063 0.1343012
dCl/dβ dCd/dβ dCm/dβ

FD(Δβ=10-6) 3.65374 0.0217594 -1.26809

DD 3.65373 0.0217605 -1.26808

Table 2 Validation of direct sensitivity code:
 transonic turbulence case (M∞ = 0.75, α = 2°  and Re = 6,500,000)

 dCl/dα dCd/dα dCm/dα
FD (Δα=10-6) 8.37948 0.486983 0.222065

DD 8.37972 0.486994 0.222014

 dCl/dβ dCd/dβ dCm/dβ
FD (Δβ=10-7) 7.13337 -0.195777 -1.85788

DD 7.13346 -0.195774 -1.85790

The second example is a transonic turbulent flow case.  The flow condition is M∞ = 0.75, α = 2°
and Reynolds number = 6,500,000.  A strong shock wave is formed on the upper surface of the air-
foil.  Fig. 3 shows pressure sensitivity contours with respect to incidence angle α, which represents a
drastic variation of the pressure around the shock wave.  Streamlines of the velocity derivative are
similar to the subsonic case, but it is getting close to the flow separation downstream of the shock
wave as can be seen in Fig. 4.  Table 2 presents  the sensitivity derivatives of aerodynamic coeffi-
cients with respect to two design variables.  As in the subsonic case, the sensitivity derivatives of
aerodynamic coefficients by the direct differentiation method and the finite difference method are
identical with each other up to four or five significant dig its.

Adjoint Variable Method

In order to validate the sensitivity code by the adjoint variable method, the sensitivity derivatives
calculated by using the adjoint sensitivity code are compared to those by the direct sensitivity code.
Computations are conducted for both subsonic laminar and transonic turbulent flows.

The first example is a subsonic laminar case. The flow condition is M∞ = 0.6, α = 1°  and Rey-
nolds number = 5,000.  Fig.5 shows λm1 contours and streamlines of (λm2,λm3).  The subscript m
means that the system response of interest Cj was Cm in the adjoint equations.  The integer subscript
figures 1, 2 and 3 represents elements of the adjoint variable vector { }T

jλ  ( { }T
4j3j2j1j ,,, λλλλ= ) corre-

sponding to the conservative flow variable vector Q (= {ρ, ρu, ρv, e}Τ).  The λm1 has a large gradi-
ent in the boundary layer region on the airfoil surface and around the stagnation streamline upstream
of the airfoil leading edge.  Streamlines of the vector (λm2,λm3) show discontinuity of the vector
direction around the flow stagnation streamline upstream of the airfoil leading edge.  Streamlines of
the vector (λm2,λm3) look like circulation lines with a negative lift or the opposite flow direction.

In Table 3, we can note that the total derivatives of aerodynamic coefficients with respect to
geometric perturbation by the direct and adjoint sensitivity codes are identical with each other up to 6
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significant digits.
The second example is a transonic turbulent flow case.  The flow condition is M∞ = 0.75, α = 2°

and Reynolds number = 6,500,000.  The adjoint sensitivity code was run in two modes, one with
turbulence eddy viscosity (µt) terms differentiated and the other with constant turbulence eddy vis-
cosity (µ’t=0).  λl1 contours around NACA0012 airfoil are plotted in Fig. 6.  The λl1 has a large
gradient around the stagnation streamline and in the boundary layer on the airfoil surface.

Table 3 Validation of adjoint sensitivity code:
subsonic laminar case (M∞ = 0.60, α = 1°  and Re = 5,000)

dCl/dβ dCd/dβ  dCm/dβ
AV -1.2065570 0.08362676 -0.12162388
FD -1.2065569 0.08362679 -0.12162394

discontinuity of the adjoint variables around the stagnation streamline in Fig. 5 and 6 is due to the
existence of singularity crossing the incoming stagnation streamline upstream of the airfoil leading
edge.[11]

Table 4 Validation of Adjoint Sensitivity Code:
              transonic turbulence case (M∞ = 0.75, α = 2°  and Re = 6,500,000)

dCl/dα dCd/dα dCm/dα
DD 8.37972 0.486994 0.222014
AV 8.28911

(0.9892)
0.486983
(0.9948)

0.242023
(1.0901)

AV
(µ′ t=0)

7.73075
(0.9226)

0.483649
(0.9931)

0.342835
(1.544)

dCl/dβ dCd/dβ dCm/dβ
DD 7.13346 -0.195774 -1.85790
AV 7.17228

(0.9946)
-0.190391
(0.9725)

-1.86124
(1.0018)

AV
(µ′ t=0)

9.37707
(1.3145)

-0.123950
(0.6331)

-2.233926
(1.2024)

Table 4 compares the sensitivity derivatives of aerodynamic coefficients with respect to two des-
ign variables. The values in the parentheses are sensitivity derivative ratios that are the sensitivity
derivatives via the adjoint sensitivity code normalized by the respective sensitivity derivatives via the
direct differentiation code.  The sensitivity derivatives of the adjoint sensitivity code with differenti-
ated eddy viscosity terms show about 0.18~9 % deviation from those of the direct differentiation code.
On the other hand, the adjoint code results with µ′ t=0 show much larger deviations(0.5~54%).

Required Computational Time and Memory

Table 5 compares computational time per iteration and memory for the sensitivity codes devel-
oped herein with those for the codes generated by the automatic differentiation tools.  The presented
values are normalized by the time and memory required for the original flow solver.  The sensitivity
codes developed in this study require less computational time and memory than those by automatic
differentiation.  Although computational time per iteration for an Odyssée-generated adjoint code
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was not available, it is significantly slower than a hand-differentiated code by a factor of 5 in CPU
time.[8]

The direct and adjoint sensitivity codes have similar convergence ratio with the flow solver as
they all employ van Leer’s flux jacobian in the implicit part.  The direct sensitivity code requires
much less computational time than finite difference approximations as its convergence tolerance to
obtain accurate sensitivity derivatives is larger than that of the flow solver by four orders of magni-
tude approximately.

Table5 Comparison of computational time and me mory
Sensitivity code

Present AD
Flow

Solver
DD AV DDa AVb

Time
Per iteration 1 1.1 2.4 2~3 NA

Memory 1 1.8 1.8 2 10

             a: by ADIFOR[4]  b: by Odyssée[7] , NA : Not Available

The adjoint sensitivity code requires more than two times the computational time of the direct
sensitivity code because the elements of the residual vector R are differentiated by the four elements
of the flow variable  Q instead of the design variable βk as in the direct code.  Thus, the adjoint code
would be more economical than the direct sensitivity code to calculate sensitivity derivatives if the
number of design variables is larger than twice the number of objectives and constraints.

5. Concluding Remarks

The direct differentiation approach and the adjoint variable approach are applied respectively to
the discrete flow equations to develop aerodynamic sensitivity analysis codes for turbulent flows.  A
Navier-Stokes solver with Baldwin-Lomax turbulence model is differentiated by hand to obtain des-
ign sensitivities with respect to design variables of interest efficiently.  Direct sensitivity equations
and adjoint equations are efficiently solved by the same time integration scheme with the flow solver.
The required memory for the adjoint sensitivity code is greatly reduced at the cost of the computa-
tional time by allowing the large banded flux jacobian matrix unassembled.

Sensitivity derivatives computed by the sensitivity codes almost exactly coincide with those of the
finite difference method.  Although adjoint code results of the turbulent flow case show slight de-
viations from the exact results, the adjoint sensitivity code gives much more accurate sensitivity de-
rivatives than the adjoint code with the turbulence eddy viscosity being kept constant, which is a
usual assumption for the prior researches.

The strategy adopted in this research shows a promise for the extension to three-dimensional
problems as it is efficient, accurate and requires much less memory than the prior approaches.
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Fig.1 Direct differentiation sensitivity analysis:
     dp/dα contour,  subsonic turbulence case

     (M∞ = 0.60, α = 2° , Re = 6,500,000)

Fig.3 Direct differentiation sensitivity analysis:
     pressure sensitivity contour for α
     transonic turbulence case
     (M∞ = 0.75, α = 2° , Re = 6,500,000)

Fig.2 Direct differentiation senitivity analysis:
velocity sensitivity streamline for α

          subsonic turbulence case
     (M∞ = 0.60, α = 2° , Re = 6,500,000)

Fig.4 Direct differentiation sensitivity analysis:
velocity sensitivity streamline for α

        transonic turbulence case
        (M∞ = 0.75, α = 2° , Re = 6,500,000)
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Fig.5 Adjoint sensitivity analysis:
     λm1 contour and (λm2,λm3) streamlines

     subsonic laminar case
     (M∞ = 0.60, α = 1° , Re = 5,000)

Fig.6 Adjoint sensitivity analysis : λl1 contour
          transonic turbulence case

    (M∞ = 0.75, α = 2° , Re = 6,500,000)
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