• 제목/요약/키워드: Adhesion of Bacteria

Search Result 148, Processing Time 0.032 seconds

Adhesive Polyethylene Glycol Coatings for Low Biofouling Copper-Zinc Alloy Substrates (황동 표면의 생물 부착 억제를 위한 접착성 폴리에틸렌글라이콜 코팅)

  • Sang-woo Lee;Hyun Ho Shin;Seokjun Kwon;Ji Hyun Ryu
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, there has been a growing interest in low biofouling coatings for various industrial applications including precious metal and jewelry applications. Contaminations including cells and bacteria of the metallic substrates (i.e., accessories, earring, and piercings) may irritate the contacted tissue surfaces or induce an abnormal reaction. In this study, catechol-conjugated polyethylene glycol (PEG-C) was synthesized as low bio-fouling coating materials inspired by mussel-adhesion. PEG-C-coated copper-zinc alloy surfaces showed excellent cell viability and significant inhibitions of protein and cell adhesions to metal surfaces. Thus, PEG-C coating methods and PEG-C-coated metallic substrates can be usefully exploited for versatile industrial applications, particularly for precious metal and jewelry industries.

Inhibitory Effects of Radix Pulsatillae Extract on Insoluble Glucan Synthesis and Adhesion of Streptococcus mutans (백두옹 추출물이 Streptococcus mutans의 비수용성 글루칸형성 및 부착억제에 미치는 영향)

  • Kim, Kang Ju;Park, Bog Im;Min, Jae Hong;Chae, Min Suk;Lim, Jae You;Son, Hyeok Jin;Lee, Gi Hoon;An, So Youn;Jeon, Byung Hun;Choi, Na Young;You, Yong Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Streptococcus mutans plays a virtal role in trigering dental caries establishment due to its ability to synthesize two significant factors. The two factors are organic acids and glucans. The former demineralized dental enamel and the latter mediates the attachment of bacteria to tooth surface. It is believed that demineralization of dental enamel and attachment of bacteria are the crucial events that indicate and develop dental caries. For this reason, we studied the effect of the ethanol extracts of Radix Pulsatillae on the growth and acid production of S. mutans. Ethanol extracts of the Radix Pulsatillae showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition compared to the control groups (p<0.05). The extracts inhibited S. mutans adherence to hydroxyapatite treated with saliva, and cell adherence was repressed by Radix Pulsatillae. the ethanol extract of Radix Pulsatillae showed remarkable inhibition of glucosyltransferase, which synthesizes water insoluble glucan form sucrose. Phytochemical analysis showed Radix Pulsatillae contained major components such as phenolic compounds, glycosides, steroids, terpenoid, and saponin. These results suggest that Radix Pulsatillae may have anti-cariogenic properties, which may be related with major components such as phenolic compounds, glycosides, steroids, terpenoid, and saponin.

Probiotic Properties of Lactic Acid Bacteria isolated from Feces and Kimchi (베트남인 분변 및 김치로부터 분리된 유산균의 프로바이오틱스 기능성 연구)

  • Shin, Hyun Su;Yoo, Sung Ho;Jang, Jin Ah;Won, Ji Young;Kim, Cheol Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.255-261
    • /
    • 2017
  • The purpose of this study was to investigate the probiotic properties and antioxidant capacity of lactic acid bacteria isolated from Vietnamese feces and the Korean traditional food kimchi. Six isolated strains were identified as Lactobacillus sp. by 16S rRNA sequencing. All strains showed good resistance to low pH (1.5, 2.0, and 3.0) and 0.3% oxgall bile acids. Culture filtrates from the six strains showed various antioxidant effects, including DPPH, ABTS, reducing power, and metal chelating ($Fe^{2+}$) activities. Two of the six Lactobacillus strains showed potential probiotic activity. Heat resistance and adhesion assays were conducted by mixing the selected strains, Lactobacillus acidophilus V4, Lactobacillus plantarum V7, and Lactobacillus paracasei DK121 isolated from kimchi. The results showed that the heat resistance of these strains was similar to that of a commercial strain, L. plantarum LP. In addition, a mucin attachment assay using the mixture of selected strains (V4, V7, and DK121) showed high binding activity to the mucous layer. In conclusion, a mixture of V4, V7, and DK121 shows promising probiotic activity and may be useful for the development of health-related products.

Probiotic Potential of Pediococcus acidilactici and Enterococcus faecium Isolated from Indigenous Yogurt and Raw Goat Milk

  • Sarkar, Shovon Lal;Hossain, Md. Iqbal;Monika, Sharmin Akter;Sanyal, Santonu Kumar;Roy, Pravas Chandra;Hossain, Md. Anwar;Jahid, Iqbal Kabir
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.276-286
    • /
    • 2020
  • Probiotics are live microorganisms that, when administered in adequate amounts, confer health benefits to the host. This study was conducted for the isolation of potential lactic acid bacteria (LAB) with probiotic properties from goat milk and yogurt. Several tests were conducted in vitro using the standard procedures for evaluating the inhibitory spectra of LAB against pathogenic bacteria; tolerance to NaCl, bile salt, and phenol; hemolytic, milk coagulation, and bile salt hydrolase activities; gastrointestinal transit tolerance; adhesion properties; and antibiotic susceptibility. Among 40 LAB strains screened according to culture characteristics, five isolates exhibited antagonistic properties. Three were identified as Pediococcus acidilactici, and two were identified as Enterococcus faecium, exploiting 16S rRNA gene sequencing. All the isolates succeeded in the gastrointestinal transit tolerance assay and successively colonized mucosal epithelial cells. Based on the results of these in vitro assays, both P. acidilactici and E. faecium can be considered as potential probiotic candidates.

Staphylococcus saprophyticus and Escherichia coli: Tracking from sperm fertility potential to assisted reproductive outcomes

  • Ghasemian, Fatemeh;Esmaeilnezhad, Shahin;Moghaddam, Mohammad Javad Mehdipour
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.142-149
    • /
    • 2021
  • Objective: Bacteriospermia and urogenital infections are common problems in male infertility. This study aimed to evaluate the effects of bacteriospermia on sperm parameters and clinical outcomes in semen samples infected with two common bacteria (Staphylococcus saprophyticus and Escherichia coli) in northern Iran. Methods: Microbiological tests were performed to isolate and identify organisms from 435 semen samples from infertile couples. Semen samples were assessed according to the World Health Organization criteria. The protamine status, chromatin structure, chromatin condensation, and acrosome reaction of sperm and assisted reproductive outcomes were determined in couples with different male infertility factors. Results: Among the total cases, the two most prevalent pathogens were considered: S. saprophyticus (38.2%) and E. coli (52.9%). In the semen samples infected with E. coli, the spontaneous acrosome reaction and abnormal chromatin condensation were more common (p<0.05). Significant increases in abnormal chromatin condensation and deprotamination were seen in the presence of S. saprophyticus. In washed semen, tight adhesion between the sperm midpiece and S. saprophyticus was observed. There was also a significant decrease in the fertilization rate using semen samples infected with S. saprophyticus and E. coli during in vitro fertilization cycles (p<0.001). In addition, the presence of S. saprophyticus and E. coli in semen samples was associated with a lower likelihood of clinical pregnancy in couples with various factors of male infertility. Conclusion: Poor results of assisted reproductive techniques may be correlated with semen samples infected with two common bacteria in northern Iran.

Effects of N-acetylcysteine on biofilm formation by MBR sludge

  • Song, WonJung;Lade, Harshad;Yu, YoungJae;Kweon, JiHyang
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.195-203
    • /
    • 2018
  • N-acetylcysteine (NAC) has been widely used as an initial mucolytic agent and is generally used as an antioxidant to help alleviate various inflammatory symptoms. NAC reduces bacterial extracellular polymeric substances (EPS) production, bacterial adhesion to the surface and strength of mature biofilm. The efficacy has been shown to inhibit proliferation of gram-positive and gram-negative bacteria. In membrane bioreactor (MBR) processes, which contain a variety of gram negative bacteria, biofilm formation has become a serious problem in stable operation. In this study, use of NAC as an inhibitor of biofilm contamination was investigated using the center for disease control (CDC) reactors with MBR sludge. Biomass reduction was confirmed with CLSM images of membrane surfaces by addition of NAC, which was more efficient as the concentration of NAC was increased to 1.5 mg/mL. NAC addition also showed decreases in EPS concentrations of the preformed biofilm, indicating that NAC was able to degrade EPS in the mature biofilm. NAC addition was also effective to inhibit biofilm formation by MBR sludge, which consisted of various microorganisms in consortia.

Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method

  • Wang, Xu;Malovichko, Galina;Mendonça, Marcelo;Conceição, Fabricio Rochedo;Aleixo, José AG;Zhu, Xiangdong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.165-168
    • /
    • 2016
  • Surface protein internalin (InlA) is a major virulence factor of the food-borne pathogen L. monocytogenes. It plays an important role in bacteria crossing the host's barrier by specific interaction with the cell adhesion molecule E-cadherin. Study of this protein will help to find better ways to prevent listeriosis. In this study, a monoclonal antibody against InlA was used to detect InlA. The reaction was label-free and monitored in real time with an oblique-incidence reflectivity-difference (OI-RD) technique. The kinetic constants kon and koff and the equilibrium dissociation constant Kd for this reaction were also obtained. These parameters indicate that the antibody is capable of detecting InlA. Additionally, the results also demonstrate the feasibility of using OI-RD for proteomics research and bacteria detection.

Characterization of Lactobacillus plantarum strains isolated from black raspberry and their effect on BALB/c mice gut microbiota

  • Choi, Hye Ran;Chung, Yi Hyung;Yuk, Hyun-Gyun;Lee, Hyunki;Jang, Han Su;Kim, Yosum;Shin, Daekeun
    • Food Science and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1747-1754
    • /
    • 2018
  • The objective of this study was to evaluate probiotic effects of two Lactobacillus plantarum strains (GBL16 and 17) isolated from black raspberry. Results revealed that the number of GBL16 was gradually decreased as bile salt concentration was increased from 0.3 to 1%. However, GBL17 did not show any difference when GBL17 was applied to 1% bile salt, and it indicates that GBL17 is more tolerant to bile salt than GBL16. GBL17 exhibited higher heat resistance and adhesion ability to Caco-2 cells than GBL16. Regarding gut microbiome, no significant change in the number of total bacteria in intestines of mice after treatment with GBLs was determined. However, the combination of GBL16 and GBL17 significantly increased the number of total bacteria in intestines of mice after they were orally administered. Therefore, the results suggest that both GBL16 and 17 strains could be one of major probiotics that can improve human gut health.

Quantitative analysis of mutans streptococci adhesion to various orthodontic bracket materials in vivo (다양한 교정용 브라켓 원재료에 부착하는 mutans streptococci 양의 비교분석)

  • Yu, Jin-Kyoung;Ahn, Sug-Joon;Lee, Shin-Jae;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • Objective: To estimate the effects of bracket material type on enamel decalcification during orthodontic treatment, this study analyzed the adhesion level of mutans streptococci (MS) to orthodontic bracket materials in vivo. Methods: Three different types of orthodontic bracket materials were used: stainless steel, monocrystalline sapphire, and polycrystalline alumina. A balanced complete block design was used to exclude the effect of positional variation of bracket materials in the oral cavity. Three types of plastic individual trays were made and one subject placed the tray in the mouth for 12 hours. Then, the attached bacteria were isolated and incubated on a mitis salivarius media containing bacitracin for 48 hours. Finally, the number of colony forming units of MS was counted. The experiments were independently performed 5 times with each of the 3 trays, resulting in a total of 15 times. Mixed model ANOVA was used to compare the adhesion amount of MS. Results: There was no difference in colony forming units among the bracket materials irrespective of jaw and tooth position. Conclusions: This study suggested that the result of quantitative analysis of MS adhesion to various orthodontic bracket materials in vivo may differ from that of the condition in vitro.

High-throughput sequencing-based metagenomic and transcriptomic analysis of intestine in piglets infected with salmonella

  • KyeongHye, Won;Dohyun, Kim;Donghyun, Shin;Jin, Hur;Hak-Kyo, Lee;Jaeyoung, Heo;Jae-Don, Oh
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1144-1172
    • /
    • 2022
  • Salmonella enterica serovar Typhimurium isolate HJL777 is a virulent bacterial strain in pigs. The high rate of salmonella infection are at high risk of non-typhoidal salmonella gastroenteritis development. Salmonellosis is most common in young pigs. We investigated changes in gut microbiota and biological function in piglets infected with salmonella via analysis of rectal fecal metagenome and intestinal transcriptome using 16S rRNA and RNA sequencing. We identified a decrease in Bacteroides and increase in harmful bacteria such as Spirochaetes and Proteobacteria by microbial community analysis. We predicted that reduction of Bacteroides by salmonella infection causes proliferation of salmonella and harmful bacteria that can cause an intestinal inflammatory response. Functional profiling of microbial communities in piglets with salmonella infection showed increasing lipid metabolism associated with proliferation of harmful bacteria and inflammatory responses. Transcriptome analysis identified 31 differentially expressed genes. Using gene ontology and Innate Immune Database analysis, we identified that BGN, DCN, ZFPM2 and BPI genes were involved in extracellular and immune mechanisms, specifically salmonella adhesion to host cells and inflammatory responses during infection. We confirmed alterations in gut microbiota and biological function during salmonella infection in piglets. Our findings will help prevent disease and improve productivity in the swine industry.