• Title/Summary/Keyword: Additive functional equation

Search Result 104, Processing Time 0.029 seconds

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

SOLUTION OF A VECTOR VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • We investigate the relation between the vector variable bi-additive functional equation $f(\sum\limits^n_{i=1} xi,\;\sum\limits^n_{i=1} yj)={\sum\limits^n_{i=1}\sum\limits^n_ {j=1}f(x_i,y_j)$ and the multi-variable quadratic functional equation $$g(\sum\limits^n_{i=1}xi)\;+\;\sum\limits_{1{\leq}i<j{\leq}n}\;g(x_i-x_j)=n\sum\limits^n_{i=1}\;g(x_i)$$. Furthermore, we find out the general solution of the above two functional equations.

ON AN ADDITIVE-QUADRATIC FUNCTIONAL EQUATION AND ITS STABILITY

  • PARK WON-GIL;BAE JAE-HYEONG;CHUNG BO-HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.563-572
    • /
    • 2005
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam stability of the additive-quadratic functional equation f(x + y, z + w) + f(x + y, z - w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w).

APPROXIMATE ADDITIVE-QUADRATIC MAPPINGS AND BI-JENSEN MAPPINGS IN 2-BANACH SPACES

  • Park, Won-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.467-476
    • /
    • 2017
  • In this paper, we obtain the stability of the additive-quadratic functional equation f(x+y, z+w)+f(x+y, z-w) = 2f(x, z)+2f(x, w)+2f(y, z)+2f(y, w) and the bi-Jensen functional equation $$4f(\frac{x+y}{2},\;\frac{z+w}{2})=f(x,\;z)+f(x,\;w)+f(y,\;z)+f(y,\;w)$$ in 2-Banach spaces.

AN ADDITIVE FUNCTIONAL INEQUALITY

  • Lee, Sung Jin;Park, Choonkil;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.317-323
    • /
    • 2014
  • In this paper, we solve the additive functional inequality $${\parallel}f(x)+f(y)+f(z){\parallel}{\leq}{\parallel}{\rho}f(s(x+y+z)){\parallel}$$, where s is a nonzero real number and ${\rho}$ is a real number with ${\mid}{\rho}{\mid}$ < 3. Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

STABILITY OF A FUNCTIONAL EQUATION OBTAINED BY COMBINING TWO FUNCTIONAL EQUATIONS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.415-422
    • /
    • 2004
  • In this paper, we investigate the Hyers-Ulam stability and the super-stability of the functional equation f(x+y+rxy) = f(x)+f(y)+rxf(y)+ryf(x) which is obtained by combining the additive Cauchy functional equation and the derivation functional equation.